yolov5中的C3、yolov8中的C2f的【全称】和【代码】

文章目录

  • yolov5的C3全称
  • yolov8的C2f全称

yolov5的C3全称

  • 点击可找到C3模块然后查看全称:https://github.com/ultralytics/yolov5/blob/master/models/common.py
  • 全称为:CSP Bottleneck with 3 convolutions

在这里插入图片描述

  • C3模块代码
class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):"""Initializes C3 module with options for channel count, bottleneck repetition, shortcut usage, groupconvolutions, and expansion."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):"""Performs forward propagation using concatenated outputs from two convolutions and a Bottleneck sequence."""return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

yolov8的C2f全称

  • 点击可找到C2f模块然后查看全称:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/modules/block.py

  • 全称是:Faster Implementation of CSP Bottleneck with 2 convolutions
    在这里插入图片描述

  • C2f模块代码

class C2f(nn.Module):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,expansion."""super().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):"""Forward pass through C2f layer."""y = list(self.cv1(x).chunk(2, 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))def forward_split(self, x):"""Forward pass using split() instead of chunk()."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/3992.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化

系列文章目录🚩 AI大模型探索之路-训练篇1:大语言模型微调基础认知 AI大模型探索之路-训练篇2:大语言模型预训练基础认知 AI大模型探索之路-训练篇3:大语言模型全景解读 AI大模型探索之路-训练篇4:大语言模型训练数据…

DML触发器的创建

目录 触发器的创建 DML触发器的创建 语句级 DML 触发器的创建 创建触发器,当对emp数据表进行添加记录、更新记录和删除记录的时候,判断是否是工作时间段,如果不是工作时间段,不允许执行 在数据表 dept 上创建触发器&#xff…

linux支持vGPU方案

1,查询gpu型号:lspci | grep "NVIDIA\|VGA" PCI Devices 2,下载驱动 官方驱动 | NVIDIA 3,安装 sudo sh NVIDIA-Linux-x86_64-440.118.02.run -no-x-check -no-nouveau-check -no-opengl-files参数说明: …

面试:finalize

一、概述 将资源释放和清理放在finalize方法中非常不好,非常影响性能,严重时甚至会引起OOM(Out Of Memory),从Java9开始就被标注为Deprecated,不建议被使用了。 二、两个重要的队列 1、unfinalized 队列 当…

面向对象开发技术(第三周)

回顾 上一堂课主要学习了面向对象编程与非面向对象编程(面向功能、过程编程),本节课就重点来看看面向对象编程中的一个具体思想——抽象 面向对象编程的特性:1、封装性 2、继承性 3、多态性 封装:意味着提供服务接口…

基于自注意力机制的长短期记忆神经网络(LSTM-SelfAttention)的回归预测

提示:MATLAB版本需要R2023a以上 基于自注意力机制的长短期记忆神经网络(LSTM-SelfAttention)是一种用于时序数据预测的模型。这个模型结合了两个不同的结构,即长短期记忆网络(LSTM)和自注意力机制&#xff…

备考2024年小学生古诗文大会:做做10道历年真题和知识点(持续)

根据往年的安排,2024年上海市小学生古诗文大会预计还有一个月就将启动。我们继续来随机看10道往年的上海小学生古诗文大会真题,这些题目来自我去重、合并后的1700在线题库,每道题我都提供了参考答案和独家解析。 根据往期的经验,只…

【C++】类和对象⑤(static成员 | 友元 | 内部类 | 匿名对象)

🔥个人主页:Forcible Bug Maker 🔥专栏:C 目录 前言 static静态成员 友元 友元函数 友元类 内部类 匿名对象 结语 前言 本篇主要内容:类和对象的一些知识点补充,包括static静态成员,友…

STM32的Flash读写保护

参考链接 STM32的Flash读写保护,SWD引脚锁的各种解决办法汇总(2020-03-10)-腾讯云开发者社区-腾讯云 (tencent.com)https://cloud.tencent.com/developer/article/1597959 STM32系列芯片Flash解除写保护的办法 - 知乎 (zhihu.com)https://zh…

调度问题变形的贪心算法分析与实现

调度问题变形的贪心算法分析与实现 一、问题背景与算法描述二、算法正确性证明三、算法实现与分析四、结论 一、问题背景与算法描述 带截止时间和惩罚的单位时间任务调度问题是一个典型的贪心算法应用场景。该问题的目标是最小化超过截止时间导致的惩罚总和。给定一组单位时间…

【AIGC调研系列】大型语言模型如何减少幻觉生成

在解读大型语言模型(LLMs)中的长格式事实性问题时,我们首先需要认识到这些模型在生成内容时可能会产生与既定事实不一致的情况,这种情况通常被称为“幻觉”[2][3]。这种现象不仅可能导致信息的误传,还可能对社会造成误…

使用nssm把批处理(.bat)文件设置为Windows 服务

本文以canal为例 使用nssm把批处理(.bat)文件设置为Windows 服务 下载 nssm: 前往 nssm 官方网站 下载适用于系统的 nssm 工具。 安装 nssm: 将下载的 nssm 压缩文件解压缩到一个合适的位置,如 D:\nlc\6.Canal-1.1.5\nssm-2.24\win64\nss…

深度学习运算:CUDA 编程简介

一、说明 如今,当我们谈论深度学习时,通常会将其实现与利用 GPU 来提高性能联系起来。GPU(图形处理单元)最初设计用于加速图像、2D 和 3D 图形的渲染。然而,由于它们能够执行许多并行操作,因此它们的实用性…

kafka启动报错(kafka.common.InconsistentClusterIdException)

文章目录 前言kafka启动报错(kafka.common.InconsistentClusterIdException)1. 查找日志2. 定位问题/解决 前言 如果您觉得有用的话,记得给博主点个赞,评论,收藏一键三连啊,写作不易啊^ _ ^。   而且听说点赞的人每天的运气都不…

SpringCloud系列(17)--将服务消费者Consumer注册进Zookeeper

前言:在上一章节中我们把服务提供者Provider注册进了Zookeeper,而本章节则是关于如何将服务消费者Consumer注册进Zookeeper 1、再次创建一个服务提供者模块,命名为consumerzk-order80 (1)在父工程下新建模块 (2)选择模块的项目类型为Maven并…

稳态视觉诱发电位 (SSVEP) 分类学习系列 (4) :Temporal-Spatial Transformer

稳态视觉诱发电位分类学习系列:Temporal-Spatial Transformer 0. 引言1. 主要贡献2. 提出的方法2.1 解码的主要步骤2.2 网络的主要结构 3. 结果和讨论3.1 在两个数据集下的分类效果3.2 与基线模型的比较3.3 消融实验3.4 t-SNE 可视化 4. 总结欢迎来稿 论文地址:http…

【进阶六】Python实现SDVRPTW(需求拆分)常见求解算法——禁忌搜索+模拟退火算法(TS+SA)

基于python语言,采用经典禁忌搜索(TS)模拟退火(SA)对 带硬时间窗的需求拆分车辆路径规划问题(SDVRPTW) 进行求解。 目录 往期优质资源1. 适用场景2. 代码调整2.1 需求拆分2.2 需求拆分后的服务时…

EureKa技术解析:科技行业的革新风暴(ai写作)

首先,这篇文章是基于笔尖AI写作进行文章创作的,喜欢的宝子,也可以去体验下,解放双手,上班直接摸鱼~ 按照惯例,先介绍下这款笔尖AI写作,宝子也可以直接下滑跳过看正文~ 笔尖Ai写作:…

如何驱动消费者自我裂变,助力平台引流与卖货双重提升

大家好,我是微三云周丽 在浩瀚的商业海洋中,电商行业一直以其独特的魅力和无限的可能性吸引着众多创业者和投资者的目光。近年来,一种被誉为电商模式中的“神盘”——众筹卖货模式,正悄然崭露头角,以其独特的运作方式…

Docker 入门篇(二)-- Linux 环境离线安装

引言 docker 系列文章: Docker 入门篇(一)-- 简介与安装教程(Windows和Linux) 一、安装环境准备 centos :CentOS Linux release 7.6.1810 (Core)docker 版本:docker-26.1.0.tgz 官网下载地址…