AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化

系列文章目录🚩

AI大模型探索之路-训练篇1:大语言模型微调基础认知
AI大模型探索之路-训练篇2:大语言模型预训练基础认知
AI大模型探索之路-训练篇3:大语言模型全景解读
AI大模型探索之路-训练篇4:大语言模型训练数据集概览


文章目录

  • 系列文章目录🚩
  • 前言
  • 一、概述
  • 二、分词的粒度
  • 三、分词器的类型
  • 四、BPE/BBPE分词
  • 五、WordPiece分词
  • 六、Unigram 分词
  • 七、分词器的选择
  • 八、各大模型的分词效果
  • 九、SentencePiece分词器使用


前言

在自然语言处理领域,大语言模型预训练数据准备是一个重要的环节。其中,词元化(Tokenization)作为预训练前期的关键步骤,旨在将原始文本分割成模型可识别和建模的词元序列,为大语言模型提供输入数据。本文将对词元化技术进行详细介绍,包括分词的粒度、分词器的类型以及各大模型的分词效果等内容。

一、概述

分词(词元化):词元化(Tokenization)是数据预处理中的一个关键步骤,旨在将原始文本分割成模型可识别和建模的词元序列,作为大语言模型的输入数据;形成一个词汇表。
传统自然语言处理研究(如基于条件随机场的序列标注)主要使用基于词汇的分词方法,这种方法更符合人类的语言认知。然而,基于词汇的分词在某些语言(如中文分词)中可能对于相同的输入产生不同的分词结果,导致生成包含海量低频词的庞大词表,还可能存在未登录词(Out-of-vocabulary, OOV)等问题。因此,一些语言模型开始采用字符作为最小单位来分词。其中子词分词器(Subword Tokenizer)被广泛应用于基于 Transformer 的语言模型中,包括 BPE 分词、WordPiece 分词和 Unigram 分词三种常见方法。

二、分词的粒度

从分词的粒度区分,主要包括3种类型,Word 、Subword、Char
在这里插入图片描述

1)Word分词粒度以完整的单词为单位进行分词,能够很好地保留每个词的语义,适合上下文理解和语义分析。然而,它面临着长尾效应和稀有词问题,可能导致词汇表庞大并且出现OOV(Out-of-Vocabulary)问题。

OOV是“Out-Of-Vocabulary”的缩写,直译为“词汇表外的”,在自然语言处理中,表示的是那些在词汇表中没有的单词

2)Char分词粒度则是将文本拆分为字符级别,这样可以解决OOV问题,因为可以处理任何字符,但缺点是可能缺乏明确的语义信息,并且由于粒度过细,会增加后续处理的计算成本和时间。
3)Subword分词粒度介于Word和Char之间,旨在克服两者的缺点,同时保留语义信息并减少OOV问题的发生。Subword分词方法如BPE(Byte Pair Encoding)或WordPiece通过统计学方法切分单词为更小的有意义的单元,这使得它们在处理生僻词和缩写时更为有效。(目前使用比较广泛)

三、分词器的类型

针对Subword常用的分词器有3种:BPE 分词、WordPiece 分词和 Unigram 分词。
在这里插入图片描述

SentencePiece 是一个开源的分词器工具;是由谷歌开发的,旨在提供一种高效的方式来对文本进行分词,尤其适用于处理变长和不规则的文本数据。它通过训练特定领域的模型来代替预训练模型中的词表,从而更有效地处理词汇。常用的BPE、WordPiece、 Unigram分词器都支持。

四、BPE/BBPE分词

1)BPE:从字符级别开始,逐步合并最频繁连续出现的字符或字符组合,形成新的词汇单元。
2)BBPE:字节级别的 BPE(Byte-level BPE, B-BPE)是 BPE 算法的一种拓展。它将字节视为合并操作的基本符号,从而可以实现更细粒度的分割,且解决了未登录词问题。采用这种词元化方法的代表性语言模型包括 GPT-2 、BART 和 LLaMA 。
3)对于英文、拉美体系的语言来说使用BPE分词足以在可接受的词表大小下解决OOV的问题,但面对中文、日文等语言时,其稀有的字符可能会不必要的占用词汇表(词汇表要么巨大要么会OOV),因此考虑使用字节级别byte-level解决不同语言进行分词时OOV的问题。具体的,BBPE将一段文本的UTF-8编码(UTF-8保证任何语言都可以通用)中的一个字节256位不同的编码作为词表的初始化基础Subword。

例如,GPT-2 的词表大小为 50,257 ,包括 256 个字节的基本词元、一个特殊的文末词元以及通过 50,000 次合并学习到的词元。(相当于既有了BPE特性,又兼容了中文)
在这里插入图片描述

BBPE的优点:不会出现 OOV 的情况。不管是怎样的汉字,只要可以用字节表示,就都会存在于初始词表中。
BBPE的缺点:一个汉字由3个字节组成,一个汉字就会被切成多个token,但实际上这多个token没必要进行训练。

BPE词表构建整体流程如下:
在这里插入图片描述

五、WordPiece分词

1)WordPiece 分词和 BPE 分词的想法非常相似,都是通过迭代合并连续的词元,但是合并的选择标准略有不同WordPiece 分词算法并不选择最频繁的词对,而是使用下面的公式为每个词对计算分数
在这里插入图片描述

比如unable,BPE 只关心 token pair 的出现频率,即 freq_of_pair;WordPiece 还考虑了每个 token 的出现频率。即使 unable 出现频率很高,但如果 un 和 able 单个 token 的出现频率都很高,也不会合并它们。

2)WordPiece:就是将所有的「常用字」和「常用词」都存到词表中,当需要切词的时候就从词表里面查找即可。
WordPiece 的方式很有效,但当字词数目过于庞大时这个方式就有点难以实现了。对于一些多语言模型来讲,要想穷举所有语言中的常用词,这个量会非常大(穷举不全会造成 OOV)
在这里插入图片描述

六、Unigram 分词

Unigram分词器与BPE和WordPiece的不同在于它的构建过程。Unigram初始化时会创建一个非常大的词汇表,然后根据一定的标准逐步丢弃较不常用的词汇单元,直到满足限定的词汇表大小(比较适合处理生僻词)

七、分词器的选择

大语言模型通常使用 SentencePiece 代码库为预训练语料训练定制化的分词器(也可以自定义);
这一代码库支持字节级别的 BPE 、 Unigram 、WordPiece分词。为了训练出高效的分词器,通常主要关注以下几个因素。首先,分词器必须具备无损重构的特性,即其分词结果能够准确无误地还原为原始输入文本。其次,分词器应具有高压缩率,即在给定文本数据的情况下,经过分词处理后的词元数量应尽可能少,从而实现更为高效的文本编码和存储。具体来说,压缩比可以通过将原始文本的 UTF-8 字节数除以分词器生成的词元数(即每个词元的平均字节数)来计算:
在这里插入图片描述

例如,给定一段大小为 1MB(1,048,576 字节)的文本,如果它被分词为 200,000
个词元,其压缩率即为 1,048,576/200,000=5.24

八、各大模型的分词效果

分词效果:男儿何不带吴钩,收取关山五十州
在这里插入图片描述

1、LLaMA 词表是最小的,LLaMA 在中英文上的平均 token 数都是最多的,意味 LLaMA 对中英文分词都会比较碎,比较细粒度。
尤其在中文上平均 token 数高达1.45,这意味着 LLaMA 大概率会将中文字符切分为2个以上的 token。
2、Chinese LLaMA 扩展词表后,中文平均 token 数显著降低,会将一个汉字或两个汉字切分为一个 token,提高了中文编码效率。
3、ChatGLM-6B 是平衡中英文分词效果最好的 tokenizer。由于词表比较大,中文处理时间也有增加。
4、BLOOM 虽然是词表最大的,但由于是多语种的,在中英文上分词效率与 ChatGLM-6B 基本相当。
在这里插入图片描述

九、SentencePiece分词器使用

SentencePiece地址:https://github.com/google/sentencepiece
1)安装相关依赖

pip install sentencepiece

2)分词器使用

% spm_train --input=<input> --model_prefix=<model_name> --vocab_size=8000 --character_coverage=1.0 --model_type=<type>

参数说明:

--input:原始语料库文件,可以传递以逗号分隔的文件列表。
--model_prefix:输出的词表名称; 文件格式:<model_name>.model 、 <model_name>.vocab
--vocab_size:设置词表大小,例如 8000、16000 或 32000
--character_coverage:词表对语料库的覆盖率,默认:0.9995 对于具有丰富字符集的语言(如日语或中文)和其他具有小字符集的语言可以设置为1.0 (即对原料库的覆盖率为100%,包含语料库所有的单词)
--model_type:模型类型。unigram (default), bpe, char, or word

🔖更多专栏系列文章:🚩🚩🚩AIGC-AI大模型探索之路

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,还望各位老铁多多关注并给予支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/3991.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DML触发器的创建

目录 触发器的创建 DML触发器的创建 语句级 DML 触发器的创建 创建触发器&#xff0c;当对emp数据表进行添加记录、更新记录和删除记录的时候&#xff0c;判断是否是工作时间段&#xff0c;如果不是工作时间段&#xff0c;不允许执行 在数据表 dept 上创建触发器&#xff…

linux支持vGPU方案

1&#xff0c;查询gpu型号&#xff1a;lspci | grep "NVIDIA\|VGA" PCI Devices 2&#xff0c;下载驱动 官方驱动 | NVIDIA 3&#xff0c;安装 sudo sh NVIDIA-Linux-x86_64-440.118.02.run -no-x-check -no-nouveau-check -no-opengl-files参数说明&#xff1a; …

面试:finalize

一、概述 将资源释放和清理放在finalize方法中非常不好&#xff0c;非常影响性能&#xff0c;严重时甚至会引起OOM&#xff08;Out Of Memory&#xff09;&#xff0c;从Java9开始就被标注为Deprecated&#xff0c;不建议被使用了。 二、两个重要的队列 1、unfinalized 队列 当…

面向对象开发技术(第三周)

回顾 上一堂课主要学习了面向对象编程与非面向对象编程&#xff08;面向功能、过程编程&#xff09;&#xff0c;本节课就重点来看看面向对象编程中的一个具体思想——抽象 面向对象编程的特性&#xff1a;1、封装性 2、继承性 3、多态性 封装&#xff1a;意味着提供服务接口…

基于自注意力机制的长短期记忆神经网络(LSTM-SelfAttention)的回归预测

提示&#xff1a;MATLAB版本需要R2023a以上 基于自注意力机制的长短期记忆神经网络&#xff08;LSTM-SelfAttention&#xff09;是一种用于时序数据预测的模型。这个模型结合了两个不同的结构&#xff0c;即长短期记忆网络&#xff08;LSTM&#xff09;和自注意力机制&#xff…

备考2024年小学生古诗文大会:做做10道历年真题和知识点(持续)

根据往年的安排&#xff0c;2024年上海市小学生古诗文大会预计还有一个月就将启动。我们继续来随机看10道往年的上海小学生古诗文大会真题&#xff0c;这些题目来自我去重、合并后的1700在线题库&#xff0c;每道题我都提供了参考答案和独家解析。 根据往期的经验&#xff0c;只…

【C++】类和对象⑤(static成员 | 友元 | 内部类 | 匿名对象)

&#x1f525;个人主页&#xff1a;Forcible Bug Maker &#x1f525;专栏&#xff1a;C 目录 前言 static静态成员 友元 友元函数 友元类 内部类 匿名对象 结语 前言 本篇主要内容&#xff1a;类和对象的一些知识点补充&#xff0c;包括static静态成员&#xff0c;友…

STM32的Flash读写保护

参考链接 STM32的Flash读写保护&#xff0c;SWD引脚锁的各种解决办法汇总&#xff08;2020-03-10&#xff09;-腾讯云开发者社区-腾讯云 (tencent.com)https://cloud.tencent.com/developer/article/1597959 STM32系列芯片Flash解除写保护的办法 - 知乎 (zhihu.com)https://zh…

调度问题变形的贪心算法分析与实现

调度问题变形的贪心算法分析与实现 一、问题背景与算法描述二、算法正确性证明三、算法实现与分析四、结论 一、问题背景与算法描述 带截止时间和惩罚的单位时间任务调度问题是一个典型的贪心算法应用场景。该问题的目标是最小化超过截止时间导致的惩罚总和。给定一组单位时间…

【AIGC调研系列】大型语言模型如何减少幻觉生成

在解读大型语言模型&#xff08;LLMs&#xff09;中的长格式事实性问题时&#xff0c;我们首先需要认识到这些模型在生成内容时可能会产生与既定事实不一致的情况&#xff0c;这种情况通常被称为“幻觉”[2][3]。这种现象不仅可能导致信息的误传&#xff0c;还可能对社会造成误…

使用nssm把批处理(.bat)文件设置为Windows 服务

本文以canal为例 使用nssm把批处理(.bat)文件设置为Windows 服务 下载 nssm&#xff1a; 前往 nssm 官方网站 下载适用于系统的 nssm 工具。 安装 nssm&#xff1a; 将下载的 nssm 压缩文件解压缩到一个合适的位置&#xff0c;如 D:\nlc\6.Canal-1.1.5\nssm-2.24\win64\nss…

深度学习运算:CUDA 编程简介

一、说明 如今&#xff0c;当我们谈论深度学习时&#xff0c;通常会将其实现与利用 GPU 来提高性能联系起来。GPU&#xff08;图形处理单元&#xff09;最初设计用于加速图像、2D 和 3D 图形的渲染。然而&#xff0c;由于它们能够执行许多并行操作&#xff0c;因此它们的实用性…

kafka启动报错(kafka.common.InconsistentClusterIdException)

文章目录 前言kafka启动报错(kafka.common.InconsistentClusterIdException)1. 查找日志2. 定位问题/解决 前言 如果您觉得有用的话&#xff0c;记得给博主点个赞&#xff0c;评论&#xff0c;收藏一键三连啊&#xff0c;写作不易啊^ _ ^。   而且听说点赞的人每天的运气都不…

SpringCloud系列(17)--将服务消费者Consumer注册进Zookeeper

前言&#xff1a;在上一章节中我们把服务提供者Provider注册进了Zookeeper&#xff0c;而本章节则是关于如何将服务消费者Consumer注册进Zookeeper 1、再次创建一个服务提供者模块&#xff0c;命名为consumerzk-order80 (1)在父工程下新建模块 (2)选择模块的项目类型为Maven并…

稳态视觉诱发电位 (SSVEP) 分类学习系列 (4) :Temporal-Spatial Transformer

稳态视觉诱发电位分类学习系列:Temporal-Spatial Transformer 0. 引言1. 主要贡献2. 提出的方法2.1 解码的主要步骤2.2 网络的主要结构 3. 结果和讨论3.1 在两个数据集下的分类效果3.2 与基线模型的比较3.3 消融实验3.4 t-SNE 可视化 4. 总结欢迎来稿 论文地址&#xff1a;http…

【进阶六】Python实现SDVRPTW(需求拆分)常见求解算法——禁忌搜索+模拟退火算法(TS+SA)

基于python语言&#xff0c;采用经典禁忌搜索&#xff08;TS&#xff09;模拟退火&#xff08;SA&#xff09;对 带硬时间窗的需求拆分车辆路径规划问题&#xff08;SDVRPTW&#xff09; 进行求解。 目录 往期优质资源1. 适用场景2. 代码调整2.1 需求拆分2.2 需求拆分后的服务时…

EureKa技术解析:科技行业的革新风暴(ai写作)

首先&#xff0c;这篇文章是基于笔尖AI写作进行文章创作的&#xff0c;喜欢的宝子&#xff0c;也可以去体验下&#xff0c;解放双手&#xff0c;上班直接摸鱼~ 按照惯例&#xff0c;先介绍下这款笔尖AI写作&#xff0c;宝子也可以直接下滑跳过看正文~ 笔尖Ai写作&#xff1a;…

如何驱动消费者自我裂变,助力平台引流与卖货双重提升

大家好&#xff0c;我是微三云周丽 在浩瀚的商业海洋中&#xff0c;电商行业一直以其独特的魅力和无限的可能性吸引着众多创业者和投资者的目光。近年来&#xff0c;一种被誉为电商模式中的“神盘”——众筹卖货模式&#xff0c;正悄然崭露头角&#xff0c;以其独特的运作方式…

Docker 入门篇(二)-- Linux 环境离线安装

引言 docker 系列文章&#xff1a; Docker 入门篇&#xff08;一&#xff09;-- 简介与安装教程&#xff08;Windows和Linux&#xff09; 一、安装环境准备 centos &#xff1a;CentOS Linux release 7.6.1810 (Core)docker 版本&#xff1a;docker-26.1.0.tgz 官网下载地址…

【RAG 论文】Chain-of-Note:为 RAG 引入 CoT 让模型生成阅读笔记来提高面对噪音文档和未知场景的鲁棒性

论文&#xff1a;Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models ⭐⭐⭐ Tencent AI Lab, arXiv:2311.09210 文章目录 一、论文速读二、实现的细节2.1 Note Design2.2 Data Collection2.3 Model Training 三、实验结果3.1 QA Performance3.2 对 …