《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
一、AI应用软件开发实战专栏【链接】
项目名称 | 项目名称 |
---|---|
1.【人脸识别与管理系统开发】 | 2.【车牌识别与自动收费管理系统开发】 |
3.【手势识别系统开发】 | 4.【人脸面部活体检测系统开发】 |
5.【图片风格快速迁移软件开发】 | 6.【人脸表表情识别系统】 |
7.【YOLOv8多目标识别与自动标注软件开发】 | 8.【基于YOLOv8深度学习的行人跌倒检测系统】 |
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】 | 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】 |
11.【基于YOLOv8深度学习的安全帽目标检测系统】 | 12.【基于YOLOv8深度学习的120种犬类检测与识别系统】 |
13.【基于YOLOv8深度学习的路面坑洞检测系统】 | 14.【基于YOLOv8深度学习的火焰烟雾检测系统】 |
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】 | 16.【基于YOLOv8深度学习的舰船目标分类检测系统】 |
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】 | 18.【基于YOLOv8深度学习的血细胞检测与计数系统】 |
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】 | 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】 |
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】 | 22.【基于YOLOv8深度学习的路面标志线检测与识别系统】 |
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】 | 24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】 |
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】 | 26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】 |
27.【基于YOLOv8深度学习的人脸面部表情识别系统】 | 28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】 |
29.【基于YOLOv8深度学习的智能肺炎诊断系统】 | 30.【基于YOLOv8深度学习的葡萄簇目标检测系统】 |
31.【基于YOLOv8深度学习的100种中草药智能识别系统】 | 32.【基于YOLOv8深度学习的102种花卉智能识别系统】 |
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】 | 34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】 |
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】 | 36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】 |
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】 | 38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】 |
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】 | 40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】 |
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】 | 42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】 |
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】 | 44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】 |
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】 | 46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】 |
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】 | 48.【车辆检测追踪与流量计数系统】 |
49.【行人检测追踪与双向流量计数系统】 | 50.【基于YOLOv8深度学习的反光衣检测与预警系统】 |
51.【危险区域人员闯入检测与报警系统】 | 52.【高密度人脸智能检测与统计系统】 |
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
基本功能演示
基于YOLOv10深度学习的CT扫描图像肾结石智能检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测
摘要:
CT扫描图像的肾结石智能检测系统
在医疗诊断方面提供了一种快速、准确的辅助工具,显著提高了医生识别和评估肾结石的效率。本文基于YOLOv10深度学习框架
,通过1300
张CT扫描的肾结石相关图片
,训练了一个进行肾结石
目标检测的模型,可以对CT扫描图像中的肾结石
进行实时检测。并基于此模型开发了一款带UI界面的肾结石智能检测系统
,更便于进行功能的展示。该系统是基于python
与PyQT5
开发的,支持图片
、视频
以及摄像头
进行目标检测
,并保存检测结果
。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。
文章目录
- 基本功能演示
- 前言
- 一、软件核心功能介绍及效果演示
- 软件主要功能
- 界面参数设置说明
- 检测结果说明
- 主要功能说明
- (1)图片检测说明
- (2)视频检测说明
- (3)摄像头检测说明
- (4)保存图片与视频检测说明
- 二、模型的训练、评估与推理
- 1.YOLOv10简介
- YOLOv10创新点
- 双标签分配
- 模型设计改进
- 2. 数据集准备与训练
- 模型训练
- 3. 训练结果评估
- 4. 检测结果识别
- 【获取方式】
- 结束语
点击跳转至文末《完整相关文件及源码》获取
前言
CT扫描图像的肾结石智能检测系统
在医疗诊断方面提供了一种快速、准确的辅助工具,显著提高了医生识别和评估肾结石的效率。这项技术利用深度学习算法分析CT图像,可以在短时间内自动识别出肾结石,减少依赖医生主观判断的需求。这对于忙碌的医疗环境中,加快诊断过程、提供实时反馈,并辅助在肾结石治疗决策中起到至关重要的作用。
其主要应用场景包括:
临床诊断:
在日常临床检查中应用,辅助医生快速确定肾结石的存在与位置。
紧急医疗:
在急诊情况下快速筛查,协助判定是否为肾结石引起的腹痛。
远程医疗服务:
在资源匮乏的区域,提供远程诊断服务,通过网络将CT图像传送至有系统支持的地方进行分析。
健康体检
:在常规体检中作为标准流程之一,自动检测肾结石状况,提早预防和治疗。
医学研究:
作为研究工具,分析肾结石发病的模式、频率和分布。
医疗数据分析:
收集并分析大量医疗图像数据,用于改进肾结石的治疗方案和预防措施。
总结来说,CT扫描图像的肾结石智能检测系统利用先进的深度学习技术,为医生提供了一个强大的辅助工具,实现了对肾结石高效率和高准确率的检测。
这不仅使临床诊断更加迅速和精确,还通过扩展至远程医疗等领域,极大地提高了医疗服务的可及性和质量。随着人工智能技术在医疗领域的持续进步,该系统的应用范围和诊断能力有望进一步扩展,为更多患者提供高质量的医疗服务。
博主通过搜集实际场景中的CT扫描的肾结石
相关数据图片,根据YOLOv10的目标检测技术,基于python与Pyqt5
开发了一款界面简洁的肾结石智能检测系统
,可支持图片、视频以及摄像头检测
,同时可以将图片或者视频检测结果进行保存
。
软件初始界面如下图所示:
检测结果界面如下:
一、软件核心功能介绍及效果演示
软件主要功能
1. 可用于实际场景中的CT扫描图像中的肾结石检测
;
2. 支持图片、视频及摄像头
进行检测,同时支持图片的批量检测
;
3. 界面可实时显示目标位置
、目标总数
、置信度
、用时
等信息;
4. 支持图片
或者视频
的检测结果保存
;
界面参数设置说明
置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;
检测结果说明
显示标签名称与置信度:
表示是否在检测图片上标签名称与置信度,显示默认不勾选,如果勾选则会在检测图片上显示标签名称与置信度;
显示标签名称与置信度结果如下:
不显示标签名称与置信度结果如下:
总目标数
:表示画面中检测出的目标数目;
目标选择
:可选择单个目标进行位置信息、置信度查看。
目标位置
:表示所选择目标的检测框,左上角与右下角的坐标位置。默认显示的是置信度最大的一个目标信息;
主要功能说明
功能视频演示见文章开头,以下是简要的操作描述。
(1)图片检测说明
点击打开图片
按钮,选择需要检测的图片,或者点击打开文件夹
按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。
点击保存
按钮,会对检测结果进行保存,存储路径为:save_data
目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。
(2)视频检测说明
点击视频
按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存
按钮,会对视频检测结果进行保存,存储路径为:save_data
目录下。
(3)摄像头检测说明
点击打开摄像头
按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。
(4)保存图片与视频检测说明
点击保存
按钮后,会将当前选择的图片【含批量图片】或者视频
的检测结果进行保存。检测的图片与视频结果会存储在save_data
目录下。
保存的检测结果文件如下:
二、模型的训练、评估与推理
1.YOLOv10简介
YOLOv10是YOLO最新一代版本的实时端到端目标检测算法。该算法在YOLO系列的基础上进行了优化和改进,旨在提高性能和效率之间的平衡。首先,作者提出了连续双分配方法,以实现NMS-free训练,从而降低了推理延迟并提高了模型的性能。其次,作者采用了全面的效率-准确性驱动的设计策略,对YOLO的各种组件进行了综合优化,大大减少了计算开销,并增强了模型的能力。实验结果表明,YOLOv10在各种模型规模下都取得了最先进的性能和效率表现。例如,YOLOv10-S比RT-DETR-R18快1.8倍,同时拥有更小的参数数量和FLOPs;与YOLOv9-C相比,YOLOv10-B的延迟减少了46%,参数减少了25%,但保持了相同的性能水平。
YOLOv10创新点
双标签分配
与一对一配对不同,一对多配对为每个真实标签分配一个预测标签,避免了后处理中的非极大抑制(NMS)。然而,它会导致弱监督,从而导致较低的准确度和收敛速度。幸运的是,这种缺陷可以通过一对多配对进行补偿。为了实现这一目标,我们在YOLO中引入了双标签分配来结合这两种策略的优点。具体来说,如上图所示,我们为 YOLO 添加了一个额外的一对一头部。它保留了一致的结构,并采用与原始的一对多分支相同的学习目标,但利用一对一匹配获得标签分配。在训练过程中,两个头与模型一起联合优化,允许骨干网络和脖子从一对多分支提供的丰富监督信号中受益。在推理过程中,我们丢弃一对多头,并使用一对一头进行预测。这使得 YOLO 能够端到端部署,而无需付出任何额外的推断成本。此外,在一对一匹配中,我们采用了顶部选择,实现了与匈牙利匹配相同的性能,同时减少了额外的训练时间。
模型设计改进
在模型设计方面,提出了以下几种改进点:
轻量级分类头: 通过对分类头进行轻量化设计,可以减少计算成本,而不会显著影响性能。
空间通道解耦降采样: 该方法通过分离空间和通道维度上的操作,提高了信息保留率,从而实现了更高的效率和竞争力。
排名引导块设计: 该方法根据各个阶段的冗余程度,采用不同的基本构建块,以实现更高效的模型设计。
大核深度卷积和部分自注意力模块: 这些模块可以在不增加太多计算开销的情况下提高模型的表现力。
2. 数据集准备与训练
通过网络上搜集关于CT扫描图像肾结石
相关图片,并使用Labelimg标注工具对每张图片进行标注。数据集一共包含1300张图片
,其中训练集包含1054张图片
,验证集包含123张图片
、测试集包含123张图片
。
部分图像及标注如下图所示:
模型训练
图片数据的存放格式如下,在项目目录中新建datasets
目录,同时将检测的图片分为训练集与验证集放入Data
目录下。
同时我们需要新建一个data.yaml
文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml
的具体内容如下:
train: D:\2MyCVProgram\5.YOLOv10Program\KidneyStoneDetection_v10\datasets\Data\train
val: D:\2MyCVProgram\5.YOLOv10Program\KidneyStoneDetection_v10\datasets\Data\valid
test: D:\2MyCVProgram\5.YOLOv10Program\KidneyStoneDetection_v10\datasets\Data\testnc: 1
names: ['KidneyStone']
注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py
文件进行模型训练,epochs
参数用于调整训练的轮数,batch
参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:
#coding:utf-8
from ultralytics import YOLOv10
import matplotlib
matplotlib.use('TkAgg')#模型配置文件
model_yaml_path = "ultralytics/cfg/models/v10/yolov10n.yaml"
#数据集配置文件
data_yaml_path = 'datasets/Data/data.yaml'
#预训练模型
pre_model_name = 'yolov10n.pt'
if __name__ == '__main__':#加载预训练模型model = YOLOv10(model_yaml_path).load(pre_model_name)#训练模型results = model.train(data=data_yaml_path,epochs=150,batch=8,name='train_v10')
3. 训练结果评估
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/
目录下找到训练过程及结果文件,如下所示:
各损失函数作用说明:
定位损失box_loss
:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss
:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss)
:DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。
本文训练结果如下:
我们通常用PR曲线
来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP
表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5
值为0.748
,结果还是不错的。
4. 检测结果识别
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt
文件,在runs/train/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:
#coding:utf-8
from ultralytics import YOLOv10
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/1-3-46-670589-33-1-63705540012391921600001-4673924283181105107_png_jpg.rf.feb0267fe02c47cc492e2d8366c61616.jpg"# 加载预训练模型
model = YOLOv10(path, task='detect')# 检测图片
results = model(img_path)
print(results)
res = results[0].plot(labels=False,conf=False)
# res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
以上便是关于此款CT扫描图像肾结石智能检测系统
的原理与代码介绍。基于此模型,博主用python
与Pyqt5
开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存
。
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。
【获取方式】
关注下方名片G-Z-H:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式
本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
注意:该代码基于Python3.9开发,运行界面的主程序为
MainProgram.py
,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt
配置软件运行所需环境。
关注下方名片GZH:【阿旭算法与机器学习】,并发送【源码】即可获取下载方式
结束语
以上便是博主开发的基于YOLOv10深度学习的CT扫描图像肾结石智能检测系统
的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!
觉得不错的小伙伴,感谢点赞、关注加收藏哦!