Python 基础 (标准库):heapq (堆)

1. 官方文档

heapq --- 堆队列算法 — Python 3.12.4 文档

2. 相关概念

堆 heap 是一种具体的数据结构(concrete data structures)优先级队列 priority queue 是一种抽象的数据结构(abstract data structures),可以通过堆、二叉搜索树、链表等多种方式来实现 priority queue,其中,堆是最流行的实现优先级队列的具体数据结构。

2.1 优先级队列 Priority Queue

抽象数据结构是一种逻辑上的概念,描述了数据的组织方式和操作方式。优先级队列 Priority Queue 通常用于优化任务执行,其目标是处理具有最高优先级的任务。任务完成后,其优先级降低,并返回到队列中。

Priority Queue 支持三种操作:

  1. is_empty:检查队列是否为空。
  2. add_element:向队列中添加一个元素。
  3. pop_element:弹出优先级最高的元素。

对于元素的优先级有两种约定(约定或惯例 convention,指约定俗称的用法或含义,特定上下文中使用的特定术语、符号、语法或行为的含义):1. 最大的元素具有最高的优先级;2. 最小的元素具有最高的优先级。

这两种约定其实是等价的,如果元素由数字组成,那么使用负数即可完成转换。Python heapq 模块使用第二种,这也是两种约定中更常见的一种。在这个约定下,最小的元素具有最高的优先级。

优先级队列对于查找某个极端元素是非常有用的,如:找到点击率前三的博客文章、找到从一个点到另一个点的最快方法、根据到站频率预测哪辆公共汽车将首先到达车站等问题。

2.2 堆 heap

2.2.1 堆属性

堆是特殊的完全二叉树(complete binary tree),其中每个上级节点的值都小于等于它的任意子节点(堆属性),堆常用于实现优先级队列。

二叉树(binary tree)中,每个节点最多有两个子节点。完全二叉树是一种特殊的二叉树,其定义是: 若设二叉树的深度为 h,除第 h 层外,其它各层 1~h-1 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边。也就是说,完全二叉树的所有非叶子节点都必须被填满,叶子节点都必须连续排列在最左边。满二叉树是特殊的完全二叉树。完全二叉树的性质保证,树的深度是元素数的以2为底的对数向上取整。

在堆树中,一个节点的值总是小于它的两个子节点,这被称为堆属性(与二叉搜索树不同,二叉搜索树中,只有左侧节点的值小于其父节点的值)。在堆中,同一层的节点之间并没有大小关系的限制,唯一的限制是每个节点的值必须符合堆属性。

add 操作: 1. 创建新节点添加到堆的末尾。如果底层未满,将节点添加到最深层下一个开放槽中,否则,创建一个新的层级,将元素添加到新的层中。 2. 将新元素与其父节点比较,如果新元素比父节小,则交换它们的位置,直到新元素的值小于其父节点的值或者新元素成为了根节点。

pop 操作: 1. 根据堆属性,该元素位于树的根。将堆顶元素弹出,并将堆末尾元素移到堆顶。 2. 将堆顶元素与其左右子节点比较,将其与较大(或较小)的子节点交换位置,直到堆顶元素的值大于(或小于)其左右子节点的值或者堆顶元素成为了叶子节点。

2.2.2 性能保证 performance guarantees

具体数据结构实现抽象数据结构中定义的操作,并明确性能保证 performance guarantees,即数据规模和操作所需时间之间的关系,性能保证可用于预测程序行为,比如,当输入的大小发生变化时,程序将花费多少时间完成操作。

优先级队列的堆实现保证推入(添加)和弹出(删除)元素都是对数时间操作。这意味着执行push 和 pop 所需的时间与元素数量的以2为底的对数成正比。对数增长缓慢。以2为底15的对数约为4,以2为底1万亿的对数约为40。这意味着,如果一个算法在处理15个元素时足够快,那么它在处理1万亿个元素时只会慢10倍。

2.2.3 堆与二叉搜索树的区别

排序方式不同:堆是一种基于完全二叉树的数据结构,它的每个节点都满足堆的性质,即父节点的值大于(最大堆)(或小于,即最小堆)子节点的值。而二叉搜索树则是一种有序的二叉树结构,它的每个节点都满足左子树的节点值小于该节点的值,右子树的节点值大于该节点的值。

操作不同:堆常用于实现优先队列,可以快速找到最大或最小值。堆的插入和删除操作都比较快,但查找操作比较慢。而二叉搜索树可以快速查找、插入和删除节点,但是在某些特殊情况下,可能会出现树的不平衡,导致性能下降。

强调:Python 的 heapq 模块和堆数据结构一般都不支持查找除最小元素之外的任何元素,如果想检索指定大小的元素,可以使用二叉搜索树。

堆作为优先级队列的实现,是解决涉及极端问题的好工具,当在问题描述中存在如:最大、最小、前、底、最低,最优等字眼,表明需要寻找某些极端元素时,可以考虑一下堆。

3. Python heapq Module

前面将堆描述为树,不过它是一个完全二叉树,这意味着除了最后一层之外,每层有多少元素是确定的。因此,堆可以使一个列表实现。Python 中的 heapq 模块就是使用列表实现堆的,heapq 将列表的第一个元素视为堆的根节点。

堆队列中,索引为 k 的元素与其周围元素之间的关系:

  1. 它的第一个子结点是 2*k + 1。
  2. 它的第二个子结点是 2*k + 2。
  3. 它的父结点是 (k - 1) // 2。

堆队列中的元素总是有父元素,但有些元素可能没有子元素。如果 2*k 超出了列表的末尾,则该元素没有任何子元素。如果 2*k + 1是有效索引,但 2*k + 2不是,则该元素只有一个子元素。

h[k] <= h[2*k + 1] and h[k] <= h[2*k + 2] 可能引发IndexError,但永远不会为False。

3.1 heapq 模块

Python 的 heapq 模块使用列表实现堆操作,与许多其他模块不同,heapq 模块不定义自定义类,但定义了直接处理列表的函数。

3.1.1 堆函数

函数功能

heapq.heapify(x)

将list x 转换成堆,原地,线性时间内。

===== heapq 模块中的其他基本操作假设列表已经是堆 =====

heapq.heappush(heap, item)

将 item 的值加入 heap 中,保持堆的不变性。

heapq.heappop(heap)

弹出并返回 heap 的最小的元素,保持堆的不变性。

如果堆为空,抛出 IndexError 。

使用 heap[0] ,可以只访问最小的元素而不弹出它。

heapq.heappushpop(heap, item)

将 item 放入堆中,然后弹出并返回 heap 的最小元素。

heappushpop() is equivalent to heappush() followed by heappop().

heapq.heapreplace(heap, item)

弹出并返回 heap 中最小的一项,同时推入新的 item。

如果堆为空引发 IndexError。

heapreplace() is equivalent to heappop() followed by heappush().

单步骤 heappushpop 和 heaprepalce 比分开执行 pop 和 push 更高效;

它们是 pop 和 push 的组合,非常适合在固定大小的堆使用: heapreplace() 从堆中返回一个元素并将其替换为 item;heaprepalce 返回的值可能会比新加入的值大,如果不希望如此,可改用 heappushpop(),它返回两个值中较小的一个,将较大的留在堆中。

  1. 空列表或长度为1的列表总是一个堆。
  2. 创建堆时,可以从空堆开始,将元素一个接一个地插入到堆中。如果已经有一个元素列表,使用 heapq 模块 heapify() 函数把它原地转换成有效堆。
  3. heapify() 就地修改列表,但不对其排序,堆不必为了满足堆属性而进行排序。但是,由于每个排序列表都满足堆属性,在排序列表上运行 heapify() 不会改变列表中元素的顺序。
  4. 由于树的根是第一个元素,第一个元素 a[0] 总是最小的元素。
import heapq
a = [3, 5, 1, 2, 6, 8, 7]
heapq.heapify(a)
a
# [1, 2, 3, 5, 6, 8, 7]heapq.heappop(a)
# 1
a
# [2, 5, 3, 7, 6, 8]heapq.heappush(a, 4)
heapq.heappop(a)
# 2
heapq.heappop(a)
# 3
heapq.heappop(a)
# 4

3.1.2 通用函数

函数功能

heapq.merge(*iterables, key=None, reverse=False)

merge 函数用于 merging sorted sequences,它假设输入的可迭代对象已经排序,使用堆来合并多个可迭代对象(例如,合并来自多个日志文件的带时间戳的条目),返回一个迭代器,而不是一个列表。

类似于 sorted(itertools.chain(*iterables)), 但需假定每个输入流都是已排序的(从小到大),且返回一个可迭代对象 iterator,不会一次性地将数据全部放入内存(节省内存)。

具有两个可选参数:

key 指定带有单个参数的 key function,用于从每个输入元素中提取比较键。 默认值为 None (直接比较元素)。

reverse 为一个布尔值。 如果设为 True,则输入元素将按比较结果逆序进行合并。 要达成与 sorted(itertools.chain(*iterables), reverse=True) 类似的行为,所有可迭代对象必须是已从大到小排序的。

heapq.nlargest(n, iterable, key=None)

从 iterable 所定义的数据集中返回前 n 个最大元素组成的列表。

key 为一个单参数的函数,用于从 iterable 的每个元素中提取比较键 (例如 key=str.lower)。 等价于:sorted(iterable, key=key, reverse=True)[:n]。

heapq.nsmallest(n, iterable, key=None)

从 iterable 所定义的数据集中返回前 n 个最小元素组成的列表。

key 为一个单参数的函数,用于从 iterable 的每个元素中提取比较键 (例如 key=str.lower)。 等价于: sorted(iterable, key=key)[:n]。

在 n 值较小时可考虑使用 heapq.nlargest 和 heapq.nsmallest;

对于较大的值,使用 sorted() 函数更有效率;

当 n==1 时,使用内置的 min() 和 max() 函数更高效; 

如果需要重复使用这些函数,可考虑将可迭代对象转为真正的堆。

3.1.3 应用示例

调度(合并)多组周期性任务

假设有一个系统,系统中存在几种电子邮件,不同类型的电子邮件有不同发送频率,比如 A 类邮件每15分钟发送一次,B 类每40分钟发送一次。 可以使用堆设计一个调度程序:首先,将各种类型的电子邮件添加到队列中,每封电子邮件带一个时间戳,指示下一次发送的时间;然后,查看具有最小时间戳的元素,计算在发送之前需要睡眠的时间,当调度程序醒来时,处理此邮件;处理完成后,从优先级队列中取出电子邮件,计算该邮件的下一个时间戳,放回到队列中正确的位置。

import datetime
import heapqdef email(frequency, email_type):current = datetime.datetime.now()while True:current += frequencyyield current, email_typefast_email = email(datetime.timedelta(minutes=10), "fast email")
slow_email = email(datetime.timedelta(minutes=30), "slow email")unified = heapq.merge(fast_email, slow_email)
for _ in range(10):print(next(unified))# (datetime.datetime(2024, 6, 14, 16, 40, 8, 28884), 'fast email')
# (datetime.datetime(2024, 6, 14, 16, 50, 8, 28884), 'fast email')
# (datetime.datetime(2024, 6, 14, 17, 0, 8, 28884), 'fast email')
# (datetime.datetime(2024, 6, 14, 17, 0, 8, 28884), 'slow email')
# (datetime.datetime(2024, 6, 14, 17, 10, 8, 28884), 'fast email')
# (datetime.datetime(2024, 6, 14, 17, 20, 8, 28884), 'fast email')
# (datetime.datetime(2024, 6, 14, 17, 30, 8, 28884), 'fast email')
# (datetime.datetime(2024, 6, 14, 17, 30, 8, 28884), 'slow email')
# (datetime.datetime(2024, 6, 14, 17, 40, 8, 28884), 'fast email')
# (datetime.datetime(2024, 6, 14, 17, 50, 8, 28884), 'fast email')

上述代码中,heapq.merge() 的输入是无限生成器,返回值也是一个无限迭代器,这个迭代器将按照未来时间戳的顺序生成待发送的电子邮件序列。观察 print 打印的结果,fast email 每10分钟发送一次,slow email 每40分钟发送一次,两种邮件合理交错。merge 不读取所有输入,而是动态地工作,因此,尽管两个输入都是无限迭代器,前10项的打印依然能很快完成。

得分前 N 项(后 N 项)

已知2016年夏季奥运会女子100米决赛的成绩,要求打印前三名运动员姓名。

import heapqresults="""\
Christania Williams      11.80
Marie-Josee Ta Lou       10.86
Elaine Thompson          10.71
Tori Bowie               10.83
Shelly-Ann Fraser-Pryce  10.86
English Gardner          10.94
Michelle-Lee Ahye        10.92
Dafne Schippers          10.90
"""
top_3 = heapq.nsmallest(3, results.splitlines(), key=lambda x: float(x.split()[-1]))
print("\n".join(top_3))
# Elaine Thompson          10.71
# Tori Bowie               10.83
# Marie-Josee Ta Lou       10.86

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/39285.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在非 antd pro 项目中使用 umi OpenAPI

大家好&#xff0c;我是松柏。自从跟着鱼皮哥使用了ant design pro中的OpenAPI插件之后&#xff0c;我已经无法忍受自己写请求后端接口的方法了&#xff0c;所以这篇文章记录一下如何在非ant design pro项目中使用OpenAPI。 安装依赖 首先我们需要安装包umijs/openapi&#x…

上交举办“大模型奥林匹克竞赛”,GPT-4o仅得39分

大模型的奥林匹克竞赛来了&#xff01; 最近&#xff0c;上交构建了一个全面、极具挑战性的奥赛级别的基准——OlympicArena&#xff0c;从来自62个不同奥林匹克竞赛中筛选出11,163个问题&#xff0c;涵盖数学、物理、化学、生物、地理、天文学和计算机科学等七个学科&#xf…

[22] Opencv_CUDA应用之 使用背景相减法进行对象跟踪

Opencv_CUDA应用之 使用背景相减法进行对象跟踪 背景相减法是在一系列视频帧中将前景对象从背景中分离出来的过程&#xff0c;它广泛应用于对象检测和跟踪应用中去除背景 背景相减法分四步进行&#xff1a;图像预处理 -> 背景建模 -> 检测前景 -> 数据验证 预处理去除…

AD9026芯片开发实录6-example code

官方发布的软件包中&#xff0c;带了一份example code&#xff0c;用于向客户展示API的调用方法以及基于官方的验证版ADRV902X最简单的bring up的流程。 该 example 位于软件包的路径下&#xff1a;“\Adi.Adrv9025.Api\src\c_src\app\example\”。 代码组成&#xff1a; initd…

使用ElementUI组件库

引入ElementUI组件库 1.安装插件 npm i element-ui -S 2.引入组件库 import ElementUI from element-ui; 3.引入全部样式 import element-ui/lib/theme-chalk/index.css; 4.使用 Vue.use(ElementUI); 5.在官网寻找所需样式 饿了么组件官网 我这里以button为例 6.在组件中使用…

【QT】常用控件|widget|QPushButton|RadioButton|核心属性

目录 ​编辑 概念 信号与槽机制 控件的多样性和定制性 核心属性 enabled geometry ​编辑 windowTiltle windowIcon toolTip styleSheet PushButton RadioButton 概念 QT 控件是构成图形用户界面&#xff08;GUI&#xff09;的基础组件&#xff0c;它们是实现与…

搜维尔科技:数据手套为什么要选择SenseGlove

了解 SenseGlove SenseGlove 是一支由电子工程师、触觉研究人员和计算机视觉专家、XR 开发人员、UX 设计师和产品创新者组成的科幻爱好者团队&#xff0c;他们拥有丰富人类能力和赋予 Metaverse 意义的技能和热情。 推进触觉技术是我们实现这一目标的方式。 公司及产品背景 S…

【C++知识点总结全系列 (02)】:C++中的语句、运算符和表达式详细总结

文章目录 1、语句(1)简单语句A.空语句B.复合语句 (2)条件语句(3)迭代语句A.常规for循环B.范围for循环C.while和do...while (4)跳转语句A.break语句B.continue语句C.goto语句 (5)异常处理语句A.标准异常B.throw抛出异常 (6)try语句 2、运算符(1)算术运算符(2)关系运算符(3)逻辑运…

Cybervadis认证是什么?

Cybervadis认证是一种全面且深入的网络安全评估和认证服务&#xff0c;旨在帮助组织提高其网络安全实践的成熟度&#xff0c;并有效应对不断变化的网络威胁和攻击。以下是关于Cybervadis认证的一些关键信息&#xff1a; 认证目的&#xff1a; 评估和验证组织在网络安全方面的能…

Andrej Karpathy提出未来计算机2.0构想: 完全由神经网络驱动!网友炸锅了

昨天凌晨&#xff0c;知名人工智能专家、OpenAI的联合创始人Andrej Karpathy提出了一个革命性的未来计算机的构想&#xff1a;完全由神经网络驱动的计算机&#xff0c;不再依赖传统的软件代码。 嗯&#xff0c;这是什么意思&#xff1f;全部原生LLM硬件设备的意思吗&#xff1f…

HarmonyOS开发实战:UDP通讯示例规范

1. UDP简介 UDP协议是传输层协议的一种&#xff0c;它不需要建立连接&#xff0c;是不可靠、无序的&#xff0c;相对于TCP协议报文更简单&#xff0c;在特定场景下有更高的数据传输效率&#xff0c;在现代的网络通讯中有广泛的应用&#xff0c;以最新的HTTP/3为例&#xff0c;…

vmware虚拟机安装openEuler

一、openEuler简介 openEuler是一款开源操作系统。当前openEuler内核源于Linux&#xff0c;支持鲲鹏及其它多种处理器&#xff0c;能够充分释放计算芯片的潜能&#xff0c;是由全球开源贡献者构建的高效、稳定、安全的开源操作系统&#xff0c;适用于数据库、大数据、云计算、…

EEPROM内部原理

A2, A1, A0是EEPROM的地址引脚&#xff0c;用于设置设备地址。它们的作用如下&#xff1a; 设备寻址&#xff1a; 这三个引脚允许在I2C总线上唯一地标识EEPROM芯片。通过不同的连接方式&#xff08;接高、接低或悬空&#xff09;&#xff0c;可以为同一类型的EEPROM芯片设置不同…

1uH电感SK6615电流1.5A频率2MHz输入5.5V同步降压转换器

SK6615C 1.5A 2MHz 5.5V同步降压转换器 SK6615 SOT23-5封装和丝印LA 描述 该SK6615C是一款高效、DC-DC降压型开关稳压器&#xff0c;能够提供高达1.5A的输出电流。该器件的工作输入电压范围为 2.6V 至 5.5V&#xff0c;输出电压范围为 0.6V 至 VIN。工作频率为2MHz&#xff0c…

02.C1W1.Sentiment Analysis with Logistic Regression

目录 Supervised ML and Sentiment AnalysisSupervised ML (training)Sentiment analysis Vocabulary and Feature ExtractionVocabularyFeature extractionSparse representations and some of their issues Negative and Positive FrequenciesFeature extraction with freque…

玩具租赁系统(安装+讲解+源码)

技术栈: 后端: SpringBoot Mysql MybatisPlus 前端: Vue Element 分为 管理员端 用户端 功能: 用户端 管理员端 观看地址: B站搜&#xff1a; 【毕设者】玩具租赁系统(安装讲解源码)

Java高级重点知识点-13-数据结构、List集合、List集合的子类

文章目录 数据结构List集合List的子类&#xff08;ArrayList集、LinkedList集&#xff09; 数据结构 栈 stack,又称堆栈&#xff0c;它是运算受限的线性表&#xff0c;其限制是仅允许在标的一端进行插入和删除操作&#xff0c;不允许在其他任何位置进行添加、查找、删除等操作…

cesium 添加 Echarts图层(人口迁徒图)

cesium 添加 Echarts 人口迁徒图(下面附有源码) 1、实现思路 1、在scene上面新增一个canvas画布 2、通坐标转换,将经纬度坐标转为屏幕坐标来实现 3、将ecarts 中每个series数组中元素都加 coordinateSystem: ‘cesiumEcharts’ 2、示例代码 <!DOCTYPE html> <ht…

PCIe Switch

如图所示&#xff0c;pcie Switch 被定义为多个虚拟PCI-to-PCI Bridge设备的逻辑集合。所有交换机由以下基本规则管理。 . Switch在配置软件中表现为两个或多个逻辑PCI-to-PCI桥 不需要支持下行端口作为锁定请求的发起端口. 每个enable的端口必须符合“流量控制”规范。 .S…

Linux之进程控制(上)

目录 进程创建 进程终止 进程退出码 进程终止的方式 进程等待 进程等待的方式 status概述 总结 上期我们学习了Linux中进程地址空间的概念&#xff0c;至此进程的所有基本概念已经全部学习完成&#xff0c;今天我们将开始学习进程相关的操作。 进程创建 进程创建其实…