【Linux】:命令行参数

朋友们、伙计们,我们又见面了,本期来给大家解读一下有关Linux命令行参数的相关知识点,如果看完之后对你有一定的启发,那么请留下你的三连,祝大家心想事成!

C 语 言 专 栏:C语言:从入门到精通

数据结构专栏:数据结构

个  人  主  页 :stackY、

C + + 专 栏   :C++

Linux 专 栏  :Linux

目录

1. 命令行参数

1.1 命令行参数是什么 

1.2 实现命令行版的计算器 

1.3 自定义实现基本指令 


1. 命令行参数

从我们写代码到现在,我们说mian函数是程序的入口点,那么既然是函数,就要被调用!

  • 在Linux系统中,一个进程(包括mian函数)是通过父进程fork出子进程然后开始执行的;
  • 在C语言程序中,没有其他函数直接调用mian函数;main函数的执行代表了整个程序的开始,而程序的结束则是通过main函数的返回值来表示。

其实在我们Linux系统中,mian函数也是可以带参数的;

int main(int argc, char * argv[])

那么这两个参数是代表什么意思呢?可以先来看一段代码:

#include <stdio.h>int main(int argc, char* argv[])
{for(int i = 0; i < argc; i++){printf("%d: %s\n", i, argv[i]);}return 0;
}

1.1 命令行参数是什么 

通过代码的实验可以看到:

argc就是我们在命令行输入的选项个数(以空格作为分隔符)

argv依次保存的是每一个通过空格分割的选项字串的起始地址,最后一个位置以NULL结尾

那么有没有可能argv[]里面没有任何数据呢?

肯定至少都有一个,因为启动程序的指令:./可执行程序 就已经是第一个参数了!

上述工作由shell或者OS自动帮我们完成!

1.2 实现命令行版的计算器 

可以通过命令行参数然后编写代码实现一个简易版的计算器:

通过启动可执行程序,然后在后面跟上运算法则,再带上两个数

./可执行程序 -add num1 num2 

#include <stdio.h>
#include <string.h>
#include <stdlib.h>// ./可执行程序 -add num1 num2 
int main(int argc, char *argv[])
{// 判断输入是否合理if (argc != 4){// 提示正确的使用printf("Use error, Usage: %s op[-add|sub|mul|div] num1 num2\n", argv[0]);return 1;}int x = atoi(argv[2]); // 转化为整数int y = atoi(argv[3]);int result = 0;if (strcmp(argv[1], "-add") == 0){result = x + y;printf("%d + %d = %d\n", x, y, result);}else if (strcmp(argv[1], "-sub") == 0){result = x - y;printf("%d - %d = %d\n", x, y, result);}else if (strcmp(argv[1], "-mul") == 0){result = x * y;printf("%d * %d = %d\n", x, y, result);}else if (strcmp(argv[1], "-div") == 0){if (0 == y)printf("%d/%d=error! div zero\n", x, y);elseprintf("%d/%d=%d\n", x, y, x / y);}else{printf("Use error, you should use right command line\nUsage: %s op[-add|sub|mul|div] d1 d2\n", argv[0]);}return 0;
}

通过使用命令行参数来使用这个计算器,然后再对比我们使用的指令,比如ls、ls -l、

ls -l -a、ls -l -a -n、touch file等等这些指令后面跟的选项就类似于现在实现的计算器,所以就可以得出我们使用指令的时候,第一个就是要运行的可执行程序,后面跟的选项就是一个个命令行参数,然后将这些命令行根据空格分割,传递给这个程序,然后就可以实现制定操作了!

1.3 自定义实现基本指令 

命令行参数可以支持各种指令级别的命令行选项的设置!

同样的我们也可以使用命令行参数来完成一些指令操作:通过使用C语言文件操作接口来实现touch命令

#include <stdio.h>
#include <stdlib.h>int main(int argc, char *argv[])
{// ./mytouch 文件名// 判断是否合法if (argc != 2){printf("touch: missing file operand\n");return 1;}FILE *fp = fopen(argv[1], "w");if (fp != NULL)fclose(fp);return 0;
}

朋友们、伙计们,美好的时光总是短暂的,我们本期的的分享就到此结束,欲知后事如何,请听下回分解~,最后看完别忘了留下你们弥足珍贵的三连喔,感谢大家的支持!    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/38745.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

禹神electron学习~

最近时间比较富裕 咱们浅浅来学习下electron 视频在这禹神&#xff1a;一小时快速上手Electron&#xff0c;前端Electron开发教程_哔哩哔哩_bilibili 先看下流程模型 先决条件 首先第一步 查看你的node和npm版本 创建你的应用 创建一个文件夹 我创建的名称为my-electron-…

Transformer动画讲解 - 工作原理

Transformer模型在多模态数据处理中扮演着重要角色,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。 Transformer工作原理四部曲:Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。 阶段一:…

机器人控制系列教程之任务空间运动控制器搭建(2)

Simulink中的实例 推文《机器人控制系列教程之任务空间运动控制器搭建(1)》中&#xff0c;我们详细的讲解了Simulink中的taskSpaceMotionModel模块&#xff0c;实现的方式可以按照如下的步骤。 可以控制器模型替换为taskSpaceMotionModel模块后&#xff0c;该模块的输入分别为…

501、二叉搜索树中的众数

给你一个含重复值的二叉搜索树&#xff08;BST&#xff09;的根节点 root &#xff0c;找出并返回 BST 中的所有 众数&#xff08;即&#xff0c;出现频率最高的元素&#xff09;。如果树中有不止一个众数&#xff0c;可以按 任意顺序 返回。 假定 BST 满足如下定义&#xff1…

解锁跨境电商新边界:Temu API接口深度解析引言

引言 在竞争激烈的跨境电商领域&#xff0c;高效、精准的数据获取成为商家制胜的关键。Temu&#xff08;拼多多跨境电商&#xff09;作为行业内的新秀&#xff0c;其API接口服务为商家提供了强大的数据交互能力&#xff0c;尤其是其获取商品详情的核心功能&#xff0c;更是为商…

Python 文件操作

文件编码 将文件的内容翻译为二进制 文件操作 打开文件 open函数 语法&#xff1a; open(name, mode, encoding)name&#xff1a;文件名的字符串&#xff0c;可以包含具体路径。若没有路径&#xff0c;则默认为与py文件位于同一层 mode&#xff1a;打开文件的模式&#xf…

新质生产力最新测算(Shp/dta/xcel格式,2012-2022年)

数据简介&#xff1a;参考学者蔡湘杰、贺正楚的做法、我们通过收集数据构建了如下所示的衡量新质生产力的指标体系&#xff0c;但部分数据由于收集难度以及未公布等问题&#xff0c;部分数据有缺少&#xff0c;下面展示了部分原始数据&#xff0c;便于大家进行分析。 数据来源…

RedHat9 | 内部YUM本地源服务器搭建

服务器参数 标识公司内部YUM服务器主机名yum-server网络信息192.168.37.1/24网络属性静态地址主要操作用户root 一、基础环境信息配置 修改主机名 [rootyum-server ~]# hostnamectl hostname yum-server添加网络信息 [rootyum-server ~]# nmcli connection modify ens160 …

Ansible 最佳实践:现代 IT 运维的利器

Ansible 最佳实践&#xff1a;现代 IT 运维的利器 Ansible 是一种开源的 IT 自动化工具&#xff0c;通过 SSH 协议实现远程节点和管理节点之间的通信&#xff0c;适用于配置管理、应用程序部署、任务自动化等多个场景。本文将介绍 Ansible 的基本架构、主要功能以及最佳实践&a…

免费开源的后端API服务-supabase安装和使用-简直是前端学习者福音

文章目录 它是什么安装和部署关于安装关于部署1、注册用户2、创建组织3、创建项目 创建数据库表&#xff08;填充内容&#xff09;填充数据库表 使用postman联调API 它是什么 一个开源免费的后端框架&#xff0c;firebase的替代品。可以简单理解类似于headless cms&#xff0c…

8605 删数问题

这是一个典型的贪心算法问题。我们可以从高位开始&#xff0c;找到第一个比后面数字大的数字&#xff0c;删除它&#xff0c;然后继续这个过程&#xff0c;直到删除k个数字。如果我们已经删除了k个数字&#xff0c;但是还没有找到一个比后面数字大的数字&#xff0c;那么我们就…

【多模态LLM】以ViT进行视觉表征的多模态模型1(BLIP-2、InstructBLIP)

note CLIP和BLIP的区别&#xff1a; CLIP&#xff1a;通过对比学习联合训练&#xff0c;预测图像和文本之间的匹配关系。即使用双塔结构&#xff0c;分别对图像和文本编码&#xff0c;然后通过计算cos进行图文匹配。BLIP&#xff1a;包括两个单模态编码器&#xff08;图像编码…

javascript 常见设计模式

什么是设计模式? 在软件开发中&#xff0c;设计模式是解决特定问题的经验总结和可复用的解决方案。设计模式可以提高代码的复用性、可维护性和可读性&#xff0c;是提高开发效率的重要手段。 单例模式 1.概念 单例模式 &#xff08;Singleton Pattern&#xff09;&#xf…

单片机语音识别控制蓝牙通信

基于单片机语音识别控制&蓝牙控制 1、Arduino单片机语音控制1.1 直连1.2 蓝牙无线连接1.3 部分核心程序1.4 实物演示 2、51单片机语音控制2.1 直连2.2 蓝牙无线连接2.3 部分核心程序2.4 实物演示 3、STM32单片机语音控制3.1 直连3.2 蓝牙无线连接3.3 部分核心程序3.4 实物演…

器件频频更换为哪桩

曾想象&#xff0c;在一家大型研发型企业里有如下案例&#xff1a; 硬件工程师设计电路选择了器件库中的某器件&#xff0c;在批量试产产品时&#xff0c;却发现没有库存&#xff0c;即时申请采购&#xff0c;却发现货期相当长&#xff0c;一时难以采购&#xff0c;甚至根本不…

填志愿选专业,文科男生如何选专业?

又到了高考分数出炉&#xff0c;无数学子收获喜悦的季节&#xff0c;在分数刚出炉时&#xff0c;很多学生表现的异常兴奋&#xff0c;于他们而言&#xff0c;这么多年的努力终于有了收获&#xff0c;自己该考虑选择什么专业了。而毫不夸张的说&#xff0c;很多人在拿到专业目录…

HarmonyOS开发探索:使用Snapshot Insight分析ArkTS内存问题

识别内存问题 当怀疑应用存在内存问题的时候&#xff0c;首先使用DevEco Profiler的Allocation Insight来度量内存在问题场景下的大小变化以及整体趋势&#xff0c;初步定界问题出现的位置&#xff08;Native Heap/ArkTS Heap/dev等&#xff09;。 在初步识别内存问题出现的位置…

CentOS中使用SSH远程登录

CentOS中使用SSH远程登录 准备工作SSH概述SSH服务的安装与启动建立SSH连接SSH配置文件修改SSH默认端口SSH文件传输 准备工作 两台安装CentOS系统的虚拟机 客户机&#xff08;192.168.239.128&#xff09; 服务器&#xff08;192.168.239.129&#xff09; SSH概述 Secure S…

Mustango——音乐领域知识生成模型探索

Mustango&#xff1a;利用领域知识的音乐生成模型 论文地址&#xff1a;https://arxiv.org/pdf/2311.08355.pdf 源码地址&#xff1a;https://github.com/amaai-lab/mustango 论文题为**“**利用音乐领域知识开发文本到音乐模型’Mustango’”。它利用音乐领域的知识从文本指…

K 近邻、K-NN 算法图文详解

1. 为什么学习KNN算法 KNN是监督学习分类算法&#xff0c;主要解决现实生活中分类问题。根据目标的不同将监督学习任务分为了分类学习及回归预测问题。 KNN&#xff08;K-Nearest Neihbor&#xff0c;KNN&#xff09;K近邻是机器学习算法中理论最简单&#xff0c;最好理解的算法…