目录
封装
类的作用域
类的实例化
类对象模型
如何计算类对象的大小
类对象的存储方式
结构体内存对齐规则
this指针
this指针的特性
C语言和C++实现Stack的对比
C实现
C++实现
封装
面向对象的三大特性:封装、继承、多态。
封装:将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来
和对象进行交互。
封装本质上是一种管理,让用户更方便使用类 。比如:对于电脑这样一个复杂的设备,提供给用
户的就只有开关机键、通过键盘输入,显示器, USB 插孔等,让用户和计算机进行交互,完成日
常事务。但实际上电脑真正工作的却是 CPU 、显卡、内存等一些硬件元件。
在 C++ 语言中实现封装,可以 通过类将数据以及操作数据的方法进行有机结合,通过访问权限来
隐藏对象内部实现细节,控制哪些方法可以在类外部直接被使用 。
类的作用域
类定义了一个新的作用域 ,类的所有成员都在类的作用域中 。 在类体外定义成员时,需要使用 ::
作用域操作符指明成员属于哪个类域。
class Person
{
public:void PrintPersonInfo();
private:char _name[20];char _gender[3];int _age;
};
// 这里需要指定PrintPersonInfo是属于Person这个类域
void Person::PrintPersonInfo()
{cout << _name << " "<< _gender << " " << _age << endl;
}
类的实例化
用类类型创建对象的过程,称为类的实例化
1. 类是对对象进行描述的 ,是一个 模型 一样的东西,限定了类有哪些成员,定义出一个类 并没
有分配实际的内存空间 来存储它
2. 一个类可以实例化出多个对象, 实例化出的对象 占用实际的物理空间,存储类成员变量
int main()
{Person._age = 100; // 编译失败:error C2059: 语法错误:“.”return 0;
}
Person 类是没有空间的,只有 Person 类实例化出的对象才有具体的年龄
3. 做个比方。 类实例化出对象就像现实中使用建筑设计图建造出房子,类就像是设计图 ,只设
计出需要什么东西,但是并没有实体的建筑存在,同样类也只是一个设计,实例化出的对象
才能实际存储数据,占用物理空间
类对象模型
如何计算类对象的大小
class A
{
public:
void PrintA()
{cout<<_a<<endl;
}
private:
char _a;
};
类对象的存储方式
只保存成员变量,成员函数存放在公共的代码段
结论:一个类的大小,实际就是该类中 ” 成员变量 ” 之和,当然要注意内存对齐
注意空类的大小,空类比较特殊,编译器给了空类一个字节来唯一标识这个类的对象
结构体内存对齐规则
1. 第一个成员在与结构体偏移量为 0 的地址处。
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
注意:对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
VS 中默认的对齐数为 8
3. 结构体总大小为:最大对齐数(所有变量类型最大者与默认对齐参数取最小)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整
体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
this指针
class Date
{
public:void Init(int year, int month, int day){_year = year;_month = month;_day = day;}void Print(){cout <<_year<< "-" <<_month << "-"<< _day <<endl;}
private:int _year; // 年int _month; // 月int _day; // 日
};
int main()
{Date d1, d2;d1.Init(2022,1,11);d2.Init(2022, 1, 12);d1.Print();d2.Print();return 0;
}
对于上述类,有这样的一个问题:
Date 类中有 Init 与 Print 两个成员函数,函数体中没有关于不同对象的区分,那当 d1 调用 Init 函
数时,该函数是如何知道应该设置 d1 对象,而不是设置 d2 对象呢?
C++ 中通过引入 this 指针解决该问题,即: C++ 编译器给每个 “ 非静态的成员函数 “ 增加了一个隐藏
的指针参数,让该指针指向当前对象 ( 函数运行时调用该函数的对象 ) ,在函数体中所有 “ 成员变量 ”
的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编
译器自动完成 。
this指针的特性
1. this 指针的类型:类类型 * const ,即成员函数中,不能给 this 指针赋值。
2. 只能在 “ 成员函数 ” 的内部使用
3. this 指针本质上是 “ 成员函数 ” 的形参 ,当对象调用成员函数时,将对象地址作为实参传递给
this 形参。所以 对象中不存储 this 指针 。
4. this 指针是 “ 成员函数 ” 第一个隐含的指针形参,一般情况由编译器通过 ecx 寄存器自动传
递,不需要用户传递
// 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{public:void Print(){cout << "Print()" << endl;}
private:int _a;
};
int main()
{A* p = nullptr;p->Print();return 0;
}
//答案C,语法没错,同时没有直接访问this指针,因此程序可以正常运行
// 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{
public:void PrintA() {cout<<_a<<endl;}
private:int _a;
};
int main()
{A* p = nullptr;p->PrintA();return 0;
}
//答案B,语法没错,但是对this指针进行了访问,由于没有初始化因此会报错
C语言和C++实现Stack的对比
C实现
//C语言实现
typedef int DataType;
typedef struct Stack
{DataType* array;int capacity;int size;
}Stack;
void StackInit(Stack* ps)
{assert(ps);ps->array = (DataType*)malloc(sizeof(DataType) * 3);if (NULL == ps->array){assert(0);return;}ps->capacity = 3;ps->size = 0;
}
void StackDestroy(Stack* ps)
{assert(ps);if (ps->array){free(ps->array);ps->array = NULL;ps->capacity = 0;ps->size = 0;}
}
void CheckCapacity(Stack* ps)
{if (ps->size == ps->capacity){int newcapacity = ps->capacity * 2;DataType* temp = (DataType*)realloc(ps->array,
newcapacity*sizeof(DataType));if (temp == NULL){perror("realloc申请空间失败!!!");return;}ps->array = temp;ps->capacity = newcapacity;}
}
void StackPush(Stack* ps, DataType data)
{assert(ps);CheckCapacity(ps);ps->array[ps->size] = data;ps->size++;
}
int StackEmpty(Stack* ps)
{assert(ps);return 0 == ps->size;
}
void StackPop(Stack* ps)
{if (StackEmpty(ps))return;ps->size--;
}
DataType StackTop(Stack* ps)
{assert(!StackEmpty(ps));return ps->array[ps->size - 1];
}
int StackSize(Stack* ps)
{assert(ps);return ps->size;
}
int main()
{Stack s;StackInit(&s);StackPush(&s, 1);StackPush(&s, 2);StackPush(&s, 3);StackPush(&s, 4);printf("%d\n", StackTop(&s));printf("%d\n", StackSize(&s));StackPop(&s);StackPop(&s);printf("%d\n", StackTop(&s));printf("%d\n", StackSize(&s));StackDestroy(&s);return 0;
}
C++实现
typedef int DataType;
class Stack
{
public:void Init(){_array = (DataType*)malloc(sizeof(DataType) * 3);if (NULL == _array){perror("malloc申请空间失败!!!");return;}_capacity = 3;_size = 0;}
void Push(DataType data){CheckCapacity();_array[_size] = data;_size++;}void Pop(){if (Empty())return;_size--;}DataType Top(){ return _array[_size - 1];}int Empty() { return 0 == _size;}int Size(){ return _size;}void Destroy(){if (_array){free(_array);_array = NULL;_capacity = 0;_size = 0;}}
private:void CheckCapacity(){if (_size == _capacity){int newcapacity = _capacity * 2;DataType* temp = (DataType*)realloc(_array, newcapacity *
sizeof(DataType));if (temp == NULL){perror("realloc申请空间失败!!!");return;}_array = temp;_capacity = newcapacity;}}
private:DataType* _array;int _capacity;int _size;
};
int main()
{Stack s;s.Init();s.Push(1);s.Push(2);s.Push(3);s.Push(4);printf("%d\n", s.Top());printf("%d\n", s.Size());s.Pop();s.Pop();printf("%d\n", s.Top());printf("%d\n", s.Size());s.Destroy();return 0;
}
C++ 中通过类可以将数据 以及 操作数据的方法进行完美结合,通过访问权限可以控制那些方法在
类外可以被调用,即封装 ,在使用时就像使用自己的成员一样,更符合人类对一件事物的认知。
而且每个方法不需要传递 Stack* 的参数了,编译器编译之后该参数会自动还原,即 C++ 中 Stack *
参数是编译器维护的, C 语言中需用用户自己维护 。