FPGA - DFT(离散傅里叶变换)—FFT(快速傅里叶变化)

一,DFT(离散傅里叶变换原理)

1,DFT(离散傅里叶变换原理)理论简介

        在数字信号处理中有一个基本概念:

        如果信号在频域离散的,则该信号在时域就表现为周期性的时间函数;相反,如果信号在时域离散的,则该信号在频域必然表现为周期性的频率函数。那么如果时域信号不仅是离散的,而且是周期的,那么由于它在时域离散,其频谱必是周期的;如果在时域是周期的,则相应的频谱必是离散的。换句话说,一个离散周期时间序列,它一定具有既是周期又是离散的频谱。还可以得出一个结论:一个域的离散就必然造成另一个域的周期延拓,这种离散变换,本质上都是周期的。

        一个连续信号经过理想采样后的表达式为:

其频谱函数Xa(jΩ)是上式的傅里叶变换,容易得出其傅里叶变换为: 

式中,Ω为模拟角频率,单位为rad/s,它与数字角频率ω之间的关系为ω=ΩT。对于数字信号来说,处理的信号其实是一个数字序列。因此,可用x(n)代替xa(nT),同时用X(ejω)代替xa(jω/T),则可以得到时域离散信号的频谱表达式,即: 

显然,X(ejω)是以2π为周期的函数。上式也印证了时域离散信号在频域表现为周期性函数的特性。 

        对于一个长度为N有限长序列,在频域表现为周期性的连续谱 X(ejω)。如果将有限长序列以N周期进行延拓,则在频域必将表现为周期性的离散谱X(ejωs),且单个周期的频谱形状有限长序列相同。因此,可以将X(ejωs)看成在频域对X(ejω)等间隔采样的结果。根据采样理论可知,要想采样后能够不失真地恢复原信号,采样速率必须满足一定的条件。假设时域信号的时间长度为NT,则在频域的一个周期内, 采样点数N0必须大于或等于N。

        用离散角频率变量kωs代替 中连续变量ωs,且取N0=N,则有限长序列的频谱表达式为:

        令以N为周期的函数 :

        x(n)为序列x(n)以N为周期的延拓,则上式可以写成: 

        将上式的两边同乘以,可以得到: 

        需要注意的是,上面2个式中的序列均是周期性的无限长序列。虽然是无限长序列,但只要知道该序列中一个周期的内容,序列的其他内容就知道了,所以这种无限长序列实际上只有N个序列值有信息,因此,周期序列与有限长序列有着本质的联系。 

        由于上面2个式中中只涉及0≤n≤N-1和0≤k≤N-1区间的值。也就是说,只涉及一个周期内的N个样本,因此,也可以用有限长序列x(n)和X(k),即各取一个周期来表示这些关系式。定义有限长序列x(n)和X(k)之间的关系为DFT,即:


2,DFT运算举例 

        例如,长度为4的有限长序列x1(n)=[1,1,1,1],其DFT运算过程如下:

        由于序列为全1,相当于对直流信号采样得到的数字信号,则仅存在零频分量(直流信号),不存在其他频率的信号,计算结果与实际情况相符。 

        例如,长度为4的有限长序列x2(n)=[1,2,3,4],其DFT运算过程如下:

        在MATLAB中的 fft()函数可以实现序列的频域变换。可在Matlab中使用“fft([1,1,1,1])”“fft([1,2,3,4])”可得到上面两个序列的DFT结果。 

3,DFT运算的常见问题

(1) 栅栏效应和序列补零

        利用DFT计算频谱,只能给出频谱在ωk=2πk/NΩk=2πk/NT的频率分量,即频谱的采样值,而不可能得到连续的频谱函数。就好像 通过栅栏看信号频谱一样,只能在离散点上得到信号频谱,这种现象称为栅栏效应

        在DFT计算过程中,如果序列长为N个点,则只要计算N点DFT。这意味着对序列x(n)的傅里叶变换在(0,2π)区间只计算N个点的值, 其频率采样间隔为2π/N 。 如 果 序 列 长 度 较 小 , 频 率 采 样 间 隔 ωs=2π/N可能太大,会导致不能直观地说明信号的频谱特性。有一种非常简单的方法能解决这一问题,即对序列的傅里叶变换以足够小的间隔进行采样,令数字频率间隔∆ωk=2π/L,L表示是DFT的点数。显然,要提高数字频率间隔,只需要增加L即可。当序列长度N较小时, 可采用在序列后面增加L-N个零值的办法对L点序列进行DFT以满足所需的频率采样间隔。这样可以在保持原来频谱形状不变的情况下, 使谱线加密,即增加频域采样点数,从而可以看到原来看不到的频谱分量。

(2)频谱泄漏和混叠失真

        对信号进行DFT计算,首先必须使其变成时间宽度有限的信号,方法是将序列x(n)与时间宽度有限的窗函数ω(n)相乘。例如,选用矩形窗来截断信号,在频域中相当于信号频谱与窗函数频谱的周期卷积卷积将造成频谱失真,且这种失真主要表现在原频谱的扩展,这种现象称为频谱泄漏。频谱泄漏会导致频谱扩展,会使信号的最高频率可 能超过采样频率的一半,从而造成混叠失真。频谱混叠 (Aliasing) 指的是在对模拟信号进行数字化采样时,由于采样频率不足,导致原本不同的频率成分在频谱中重叠在一起,造成频谱失真,难以区分不同频率成分的现象。

(3)频率分辨率与DFT参数的选择 


        在对信号进行DFT分析信号的频谱特征时,通常采用频率分辨率来表征在频率轴上所能得到的最小频率间隔。对于长度为N的DFT,其频率分辨率∆f=fs/N,其中fs为时域信号的采样频率,这里的数据长度N 必须是数据的有效长度。如果在x(n)中有两个频率分别为f1和f2的信 号,则在对x(n)用矩形窗截断时,要分辨这两个频率,必须满足下面的条件。

        DFT时的补零没有增加序列的有效长度,所以并不能提高分辨率; 但补零可以使数据N为2的整数幂次方。补零对原X(k)起到插值作用,一方面克服栅栏效应平滑谱的外观;另一方面,由于数据截断引起的频谱泄漏有可能在频谱中出现一些难以确认的谱峰,补零后有可能消除这种现象。 

二,FFT(快速傅里叶变换)

1、FFT(快速傅里叶变换)理论简介

        快速傅里叶变换(Fast Fourier Transform,FFT)并不是一种新的变换理论,而是离散傅里叶变换(Discrete Fourier Transform, DFT)的一种高效算法

        如何高效呢?简单看一下:

        在DFT的运算中。通常x(n)、X(k)和W_{N}^{n_{k}} 都是复数,因此 每计算一个X(k)值,必须要进行N次复数乘法和N-1次复数加法。而 X(k)共有N个值(0≤k≤N-1),所以要完成全部DFT的运算要进行N 2次 复数乘法和N(N-1)次复数加法。乘法运算比加法运算复杂,且运算时间更长,所占用的硬件资源也更多,因此可以用乘法运算量来衡量一个算法的运算量。由于复数乘法运算最终是通过实数乘 法运算来完成的,每个复数乘法运算需要4个实数乘法运算,因此完成 全部DFT运算需要进行4N^{2}次实数乘法运算。所以直接进行DFT运算的计算量太大,因此极大地限制了 DFT的应用。

        仔细观察DFT运算过程,会发现系数W_{N}^{n_{k}}具有对称性和周期 性,即

        利用系数W_{N}^{n_{k}}的周期性,在DFT运算中可以将某些项合并,从而减少DFT的运算量。又由于DFT的复数乘法运算次数与N2成正比,因此N越小越有利,可以利用对称性和周期性点数大的DFT分解成多个点数小的DFTFFT算法正是基于这样的基本思路发展起来的。 

        FFT算法可分为两大类:按时间抽取(Decimation-In-Time, DIT)按频率抽取(Decimation-In-Frequency,DIF)。为了提高运算速度,将DFT运算逐次分解成点数较小的DFT运算。如果FFT算法是通过逐次分解时间序列x(n)进行的,则这种算法称为按时间抽取FFT算 法;如果FFT算法是通过逐次分解频域序列X(k)进行的,则这种算法称为按频域抽取FFT算法

2,Xilinx  FFT IP核使用详解

Vivado中IP核的配置:

(1)创建工程

打开vivado,新建工程后从IP Catalog找到FFT并双击打开;

(2)第一页配置

        FFT核提供了4种运算结构,用户根据运算速度及硬件资源情况来选择。按运算速度从高到低(资源占用从多到少)的顺序排列,这4种运算结构分别是

  •         “Pipelined, Streaming I/O”
  •         “Radix-4, Burst I/O”
  •         “Radix-2, Burst I/O”
  •         “Radix-2 Lite, Burst I/O” 。

        “Pipelined, Streaming I/O” 可 对 连 续 输 入 数 据 进 行 FFT/IFFT;

        “Radix-4, Burst I/O”的数据输入和FFT/IFFT不能同时进行,也就是说,只能先输入数据,再进行FFT/IFFT,完成FFT/IFFT 后,再输入下一段数据,这种结构需要较长的时间来进行FFT/IFFT, 但只需要较少的硬件资源;

        “Radix-2, Burst I/O”与“Radix-4, Burst I/O”类似,由于蝶形运算单元较少,可以在牺牲运算速度的前 提下节约硬件资源;

        “Radix-2 Lite, Burst I/O”采用的蝶形运算单元比“Radix-2, Burst I/O”更少,可通过分时复用的方式进一步节 约硬件资源。 

(3)第二页配置

data format:下拉标签中,对应着FFT IP核支持两种数据类型: 

  1.  定点全精度 
  2.  定点缩减位宽 

scaling optios:缩放选项 :

  1.  block floating point :不管输入的格式如何,FFT变化内部都采用浮点,会根据每一级的的数据情况自动缩放。 这个模式的输入输出位宽一致,便于调用。
  2. scaled :在m_axis_data_tuser中会有5BIT表示每一级的缩放情况,在s_axis_config_data中会有相应的字段配置配置缩放因子.每一级别包含2个stage ,2个bit 表示一级缩放,一般0-3可选,如果log(NFFT)不是2的倍数,则最高一级的缩放只能在0-1之间选取。
  3. unscaled :不用担心变化过程中会出现溢出,但是输入是32bit的话,输出是64bit。

Aresten: 复位信号要勾选,至少保持两个时钟的低电平。

output odering options: 输出顺序选项。

  1.  nature order: FFT变化后的输出已经调整了顺序,按照xk_index自然顺序列出变化结果,
  2. bit/digital reserved oder就是按照变化后的顺序直接输出,是倒序输出,需要自己后续处理,
  3. cyclic perfix insertion :循环前缀插入,一般添加,在进行IFFT后可以根据s_axis_config_data中的CP长度配置自动添加CP。

optional output fileds :选项输出字段,

  1. xk_index:FFT 变幻的结果索引,在m_axis_data_user中有相应的字段。
  2.  OVFLO是变换中溢出的指示信号,对应event_fft_overflow.

(4)第三页配置

点击ok

(5)端口信号查看 

例化代码中真正对数据输入和FFT输出有关系的端口,只有s_axis_config_XXXs_axis_data_XXX,和m_axis_data_XXX,其中前2个是输入配置,第3个是输出配置。 

s_axis_config_tdata Input[N:0] 控制输入模式,进行fft/ifft以及衰减因子的设置,FWD_INV = 1做 fft,FWD_INV = 0做ifft。
s_axis_config_tvalidInput拉高两个时钟周期之后,将端口s_axis_data_tvalid和s_axis_data_tready拉高。
s_axis_config_treadyOutputs_axis_config_tvalid拉高两个时钟周期后,该口给1输出;若干个时钟周期后,自动归零。
s_axis_data_treadyOutputaresetn拉高两个时钟周期后,该口给1输出;此时ip核初始化完成,可进行数据输入。
s_axis_data_tvalidInput当s_axis_data_tready高电平后,将s_axis_data_tvalid拉高L个周期,输入L个数据进行fft;L是FFT的点数
s_axis_data_tdataInput[M:0]数据输入进行FFT运算。
s_axis_data_tlastInput输入L个数据后拉高,指示最后一个数据。
m_axis_data_tdataOutput[M1:0]高位为虚部,低位为实部。
m_axis_data_tvalidOutputfft结果输出时拉高。
m_axis_data_tuserOutput[M2:0]输出fft的地址值,输出值*fs/L为对应频点。
m_axis_data_treadyInput保持高电平,保证FFT单元处在计算模式,并且能够输出结算结果。
m_axis_data_tlastOutput当fft结果输出到最后一个结果时拉高,紧接着下一个时钟就拉低。

3,仿真测试

通过matlab对F(t) = 100 + 50cos(2pi10t) + 50cos(2pi30t) 这个信号以Fs = 100HZ进行采样,采样点数N = 256,采样完成后,将数据转换为16位二进制,并存入txt文件中。matlab程序如下:

clearFs=100;                         %采样率1ns一个点
N = 256;
n = 1:N;
t = n/Fs;
% 生成测试信号
f1 = 10;                   %
f2 = 30;                     %
s1 = cos(2*pi*f1*t);    
s2 = cos(2*pi*f2*t);
signalN = 2 + s1 + s2 ;
data_before_fft = 50*signalN;  %系数放大50倍fp = fopen('G:\Xilinx_FPGA\matlab\data_before_fft.txt','w');
for i = 1:Nif(data_before_fft(i)>=0)temp= dec2bin(data_before_fft(i),16);elsetemp= dec2bin(data_before_fft(i)+2^16+1, 16);endfor j=1:16fprintf(fp,'%s',temp(j));endfprintf(fp,'\r\n');
end
fclose(fp);y = fft(data_before_fft,N);
y = abs(y);
f = n*Fs/N;
plot(f,y);

得到采样数据,在vivado中新建测试文件:

TB文件如下:

// -----------------------------------------------------------------------------
// Author : LGR
// File   : TB_FFT.v
// Create : 2024-06-25 10:01:24
// Revise : 2024-06-25 10:17:30
// Editor : sublime text3, tab size (4)
// -----------------------------------------------------------------------------
`timescale 1ns / 1ps
module TB_FFT();reg 				clk 							;
reg 				rst_n   						;
reg signed [15:0] 	Time_data_I[255:0]				;
reg 				data_finish_flag 				;wire              	fft_s_config_tready 			;reg signed [31:0] 	fft_s_data_tdata 				;
reg               	fft_s_data_tvalid				;
wire              	fft_s_data_tready				;
reg               	fft_s_data_tlast 				;wire signed [63:0] 	fft_m_data_tdata				;
wire signed [7:0] 	fft_m_data_tuser				;
wire              	fft_m_data_tvalid				;
reg               	fft_m_data_tready				;
wire              	fft_m_data_tlast 				;wire          		fft_event_frame_started			;
wire          		fft_event_tlast_unexpected		;
wire          		fft_event_tlast_missing			;
wire          		fft_event_status_channel_halt	;
wire          		fft_event_data_in_channel_halt	;
wire          		fft_event_data_out_channel_halt	;reg [7:0]     		count							;reg signed [25:0] 	fft_i_out 						; 
reg signed [25:0] 	fft_q_out 						;
reg signed [49:0] 	fft_abs 						;initial beginclk = 1'b1;rst_n = 1'b0;fft_m_data_tready = 1'b1;$readmemb("G:/Xilinx_FPGA/matlab/data_before_fft.txt",Time_data_I);
endalways #5 clk = ~clk;always @ (posedge clk or negedge rst_n) beginif(!rst_n) beginfft_s_data_tvalid <= 1'b0;fft_s_data_tdata  <= 32'd0;fft_s_data_tlast  <= 1'b0;data_finish_flag  <= 1'b0;count <= 8'd0;rst_n = 1'b1;endelse if (fft_s_data_tready) begin if(count == 8'd255) beginfft_s_data_tvalid <= 1'b1;fft_s_data_tlast  <= 1'b1;fft_s_data_tdata  <= {Time_data_I[count],16'd0};count <= 8'd0;data_finish_flag <= 1'b1;endelse beginfft_s_data_tvalid <= 1'b1;fft_s_data_tlast  <= 1'b0;fft_s_data_tdata  <= {Time_data_I[count],16'd0};   count <= count + 1'b1;endendelse beginfft_s_data_tvalid <= 1'b0;fft_s_data_tlast  <= 1'b0;fft_s_data_tdata <= fft_s_data_tdata;count <= count;end
endalways @ (posedge clk) beginif(fft_m_data_tvalid) beginfft_i_out <= fft_m_data_tdata[24:0];fft_q_out <= fft_m_data_tdata[56:32];end
endalways @ (posedge clk) beginfft_abs <= $signed(fft_i_out)* $signed(fft_i_out)+ $signed(fft_q_out)* $signed(fft_q_out);
end
//fft ip核例化
xfft_0 u_fft(.aclk(clk),                                                // 时钟信号(input).aresetn(rst_n),                                           // 复位信号,低有效(input).s_axis_config_tdata(8'd1),                                // ip核设置参数内容,为1时做FFT运算,为0时做IFFT运算(input).s_axis_config_tvalid(1'b1),                               // ip核配置输入有效,可直接设置为1(input).s_axis_config_tready(fft_s_config_tready),                // output wire s_axis_config_tready//作为接收时域数据时是从设备.s_axis_data_tdata(fft_s_data_tdata),                      // 把时域信号往FFT IP核传输的数据通道,[31:16]为虚部,[15:0]为实部(input,主->从).s_axis_data_tvalid(fft_s_data_tvalid),                    // 表示主设备正在驱动一个有效的传输(input,主->从).s_axis_data_tready(fft_s_data_tready),                    // 表示从设备已经准备好接收一次数据传输(output,从->主),当tvalid和tready同时为高时,启动数据传输.s_axis_data_tlast(fft_s_data_tlast),                      // 主设备向从设备发送传输结束信号(input,主->从,拉高为结束)//作为发送频谱数据时是主设备.m_axis_data_tdata(fft_m_data_tdata),                      // FFT输出的频谱数据,[47:24]对应的是虚部数据,[23:0]对应的是实部数据(output,主->从)。.m_axis_data_tuser(fft_m_data_tuser),                      // 输出频谱的索引(output,主->从),该值*fs/N即为对应频点;.m_axis_data_tvalid(fft_m_data_tvalid),                    // 表示主设备正在驱动一个有效的传输(output,主->从).m_axis_data_tready(fft_m_data_tready),                    // 表示从设备已经准备好接收一次数据传输(input,从->主),当tvalid和tready同时为高时,启动数据传输.m_axis_data_tlast(fft_m_data_tlast),                      // 主设备向从设备发送传输结束信号(output,主->从,拉高为结束)//其他输出数据.event_frame_started(fft_event_frame_started),                // output wire event_frame_started.event_tlast_unexpected(fft_event_tlast_unexpected),          // output wire event_tlast_unexpected.event_tlast_missing(fft_event_tlast_missing),                // output wire event_tlast_missing.event_status_channel_halt(fft_event_status_channel_halt),    // output wire event_status_channel_halt.event_data_in_channel_halt(fft_event_data_in_channel_halt),  // output wire event_data_in_channel_halt.event_data_out_channel_halt(fft_event_data_out_channel_halt) // output wire event_data_out_channel_halt);endmodule

首先fft_s_data_tready 拉高,表示IP核准备好接受数据,然后在下一个时钟将fft_s_data_tvaild拉高。准备向IP核写入数据,count开始计数。

在 fft_s_data_tvaild有效期间,读出txt文件的数据,按顺序写入到fft_s_data_tdata中,当count计数到255,即最后一个数据时,将fft_s_data_tlast信号拉高,代表数据写入完成。

fft_m_data_tvalid变为高电平,代表fft_m_data_tdata中将输出有效数据,即256点FFT的计算结果。

IP核的计算结果与matlab的计算结果相对比,发现数据略有偏差。

三,总结

以上从原理介绍了DFT(离散傅里叶变换原理),然后再介绍了FFT(快速傅里叶变换)以及IP核的使用,和IP核使用参数以及配置。


参考文献:

[1]朱永前,李霄.在FPGA上实现FFT的高效串行流水线结构[J].火控雷达技术,2023,52(02):61-65.DOI:10.19472/j.cnki.1008-8652.2023.02.010.

[2]侯晓晨,孟骁,陈昊.基于FPGA的混合基FFT算法设计与实现[J].太赫兹科学与电子信息学报,2021,19(02):303-307.

[3]杜勇.Xilinx FPGA 数字信号处理设计[M].电子工业出版社:202003.339. 

[4]https://blog.csdn.net/weixin_41594632/article/details/112689545

[5]尹艳清,杨湘杰,李必超,等.基于FPGA的快速傅立叶变换算法的实现[J].电子技术与软件工程,2021,(06):84-85.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/34670.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux系统安装Lua语言及Lua外部库

安装Lua Lua语言是一种轻量级、高效且可扩展的脚本语言&#xff0c;具有简洁易学的语法和占用资源少的特点。它支持动态类型&#xff0c;提供了丰富的表达式和运算符&#xff0c;同时具备自动垃圾回收机制和跨平台性。Lua语言易于嵌入到其他应用程序中&#xff0c;并可与其他语…

Spring Boot基础入门

引言 Spring Boot是一个开源的Java框架&#xff0c;旨在简化Spring应用程序的创建和部署过程。它提供了一种快速和简便的方式来创建独立的、生产级别的基于Spring的应用程序。本文将介绍Spring Boot的基础知识&#xff0c;包括其核心特性、如何开始使用Spring Boot以及构建你的…

golang 实现继承方式

经常使用java或c同学应该比较了解纯面向对象&#xff0c;继承、接口、封装等特性&#xff0c;在go中并没有特别显示的表达出来&#xff0c;但是go隐含是支持的&#xff0c;只是支持的方式不一致&#xff0c;可以说go的方式更加灵活&#xff0c;go语言精髓是组合机制&#xff0c…

淘宝扭蛋机小程序:现在是否是最佳开发时机?

随着科技的飞速发展和移动互联网的普及&#xff0c;小程序作为一种新兴的互联网应用形态&#xff0c;已经深入到人们的日常生活中。淘宝扭蛋机小程序&#xff0c;作为结合了娱乐与电商的创新模式&#xff0c;近年来备受关注。那么&#xff0c;现在是否是开发淘宝扭蛋机小程序的…

为什么 Swift 没有原生的 subArray 方法?

为什么 Swift 没有原生的 subArray 方法&#xff1f; Swift 是一门设计精良的编程语言&#xff0c;以其灵活性和高性能著称。在 Swift 中截取数组的子数组是一个常见的操作&#xff0c;但你可能会发现 Swift 标准库中并没有直接提供一个 subArray 方法。这是为什么呢&#xff…

洗地机哪个牌子最好用?测评员总结4款高配置洗地机推荐

洗地机作为现代家居清洁的得力助手&#xff0c;它不仅能让我们在日常清扫中保持高效率和高便捷性&#xff0c;特别适合快节奏生活的都市家庭。面对市场上众多的洗地机品牌与型号&#xff0c;消费者往往面临选择难题&#xff0c;对于洗地机的综合考量需要太多时间&#xff0c;而…

Spring Boot整合Druid:轻松实现SQL监控和数据库密码加密

文章目录 1 引言1.1 简介1.2 Druid的功能1.3 竞品对比 2 准备工作2.1 项目环境 3 集成Druid3.1 添加依赖3.2 配置Druid3.3 编写测试类测试3.4 访问控制台3.5 测试SQL监控3.6 数据库密码加密3.6.1 执行命令加密数据库密码3.6.2 配置参数3.6.3 测试 4 总结 1 引言 1.1 简介 Dru…

​Python20 Numpy基础

NumPy&#xff08;Numerical Python&#xff09;是一个开源的Python库&#xff0c;广泛用于科学计算。它提供了一个高性能的多维数组对象&#xff0c;以及用于处理这些数组的工具和函数。NumPy是数据分析、机器学习、工程和科学研究中不可或缺的工具之一&#xff0c;因为它提供…

使用Hugging Face获取BERT预训练模型

【图书推荐】《从零开始大模型开发与微调&#xff1a;基于PyTorch与ChatGLM》_《从零开始大模型开发与微调:基于pytorch与chatglm》-CSDN博客 BERT是一个预训练模型&#xff0c;其基本架构和存档都有相应的服务公司提供下载服务&#xff0c;而Hugging Face是一家目前专门免费提…

推荐一款好用的编辑工具——onlyoffice桌面编辑器8.1

读者大大们好呀&#xff01;&#xff01;!☀️☀️☀️ &#x1f525; 欢迎来到我的博客 &#x1f440;期待大大的关注哦❗️❗️❗️ &#x1f680;欢迎收看我的主页文章➡️寻至善的主页 文章目录 &#x1f525;前言&#x1f680;版本更新概览&#x1f697;文档编辑PDF编辑器…

搭建盲盒小程序的必要性

随着移动互联网的飞速发展&#xff0c;小程序作为一种新型的应用形态&#xff0c;已经深入人们的生活。而盲盒&#xff0c;作为一种独特的销售方式&#xff0c;因其神秘感和趣味性而备受年轻消费者的喜爱。当盲盒遇上小程序&#xff0c;便产生了一种全新的商业模式&#xff0c;…

Qt项目天气预报(5) - 根据JSON刷新天气信息+城市匹配

刷新当天天气 我们使用如下api接入&#xff0c;当然需要自己去 易客云天气API免费天气API接口|天气预报接口|全球天气API接口|气象预警|空气质量 (tianqiapi.com)注册后生成自己的对应id才可以使用 //专业天气v61 http://v1.yiketianqi.com/api?unescape1&versionv61&…

STM32学习-HAL库 串口通信

学完标准库之后&#xff0c;本来想学习freertos的&#xff0c;但是看了很多教程都是移植的HAL库程序&#xff0c;这里再学习一些HAL库的内容&#xff0c;有了基础这里直接学习主要的外设。 HAL库对于串口主要有两个结构体UART_InitTypeDef和UART_HandleTypeDef&#xff0c;前者…

白帽子的海外第一单,750刀

国际惯例&#xff0c;给兄弟们看图 这是我们师傅挖国外SRC的部分赏金截图 就问你&#xff01;挖国外漏洞赚美金香不香&#xff01; 现在国内SRC越来越卷了&#xff0c;越来越多的白帽子开始挖海外漏洞赚美金。海外SRC真的比国内赏金高很多&#xff0c;不说高危漏洞&#xff0…

MoneyPrinterPlus:AI自动短视频生成工具-腾讯云配置详解

MoneyPrinterPlus可以使用大模型自动生成短视频&#xff0c;其中的语音合成和语音识别部分需要借助于一些第三发云厂商的语音服务。 很多小伙伴可能不知道应该如何配置&#xff0c;这里给大家提供一个详细的腾讯云语音服务的配置教程。 项目已开源&#xff0c;代码地址&#…

计算几何系列——XCPC中计算几何一些题型杂谈(上)

本系列文章力求以简洁易懂的文字介绍计算几何中的基本概念&#xff0c;使读者快速入门&#xff0c;故不追求难度和深度&#xff0c;仅起到抛砖引玉的作用。 在XCPC中有一种题叫计算几何&#xff0c;这类题在大多数时候都作为一类金牌题甚至防AK题的难度出现&#xff0c;但是在…

Kotlin设计模式:代理模式详解

Kotlin设计模式&#xff1a;代理模式详解 在软件开发中&#xff0c;设计模式是解决常见问题的一种优雅方法。本文将介绍Kotlin中的代理模式&#xff08;Proxy Pattern&#xff09;&#xff0c;其应用场景&#xff0c;以及如何通过实例代码实现这一模式。 代理模式的目的 代理…

DEtection TRansformer (DETR)与YOLO在目标检测方面的比较

1. 概述 计算机视觉中的目标检测是一个复杂而有趣的领域&#xff0c;它涉及到让计算机能够识别图像中的物体&#xff0c;并确定它们的位置。下面是DETR和YOLO这两种目标检测方法简单比较&#xff1a; 1.1 YOLO YOLO是一种非常流行的目标检测算法&#xff0c;它的核心思想是将…

一种502 bad gateway nginx/1.18.0的解决办法

背景:上线的服务突然挂掉了 step1&#xff0c;去后端日志查看&#xff0c;发现并无异常&#xff0c;就是请求无法被接收 step2&#xff0c;查看了nginx的错误日志&#xff0c;发现该文件为空 step3&#xff0c;查看了niginx的运行日志&#xff0c;发现了以下问题 [error] 38#…

Python为JSON解析和生成功能库之rapidjson使用详解

概要 在现代应用程序开发中,JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,被广泛应用于Web开发、数据传输和配置文件等场景。Python自带的json模块已经非常强大,但在处理大规模数据时,其性能可能无法满足需求。为了提高JSON处理效率,Python的rapidjs…