使用Hugging Face获取BERT预训练模型

【图书推荐】《从零开始大模型开发与微调:基于PyTorch与ChatGLM》_《从零开始大模型开发与微调:基于pytorch与chatglm》-CSDN博客

BERT是一个预训练模型,其基本架构和存档都有相应的服务公司提供下载服务,而Hugging Face是一家目前专门免费提供自然语言处理预训练模型的公司。

Hugging Face是一家总部位于纽约的聊天机器人初创服务商,开发的应用在青少年中颇受欢迎,相比于其他公司,Hugging Face更加注重产品带来的情感以及环境因素。在GitHub上开源的自然语言处理、预训练模型库Transformers提供了NLP领域大量优秀的预训练语言模型和调用框架。

(1) 安装依赖。

安装Hugging Face依赖的方法很简单,命令如下:

pip install transformers

安装完成后,即可使用Hugging Face提供的预训练模型BERT。

(2) 使用Hugging Face提供的代码格式进行BERT的引入与使用,代码如下:

from transformers import BertTokenizer
from transformers import BertModeltokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
pretrain_model = BertModel.from_pretrained("bert-base-chinese")

从网上下载该模型的过程如图11-8所示,模型下载完毕后即可使用。

下面的代码演示使用BERT编码器获取对应文本的Token。

from transformers import BertTokenizer
from transformers import BertModeltokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
pretrain_model = BertModel.from_pretrained("bert-base-chinese")
tokens = tokenizer.encode("春眠不觉晓",max_length=12, padding="max_length", truncation=True)
print(tokens)
print("----------------------")print(tokenizer("春眠不觉晓",max_length=12,padding="max_length",truncation=True))

这里使用两种方法打印,打印结果如下:

[101, 3217, 4697, 679, 6230, 3236, 102, 0, 0, 0, 0, 0]
----------------------
{'input_ids': [101, 3217, 4697, 679, 6230, 3236, 102, 0, 0, 0, 0, 0], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]}

第一行是使用encode函数获取的Token,第二行是直接对其加码获取的3种不同的Token表示,对应11.1节说明的BERT输入,请读者验证学习。

需要注意的是,我们输入的是5个字符“春眠不觉晓”,而在加码后变成了7个字符,这是因为BERT默认会在单独的文本中加入[CLS]和[SEP]作为特定的分隔符。

如果想打印使用BERT计算的对应文本的Embedding值,就使用如下代码。

import torch
from transformers import BertTokenizer
from transformers import BertModeltokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
pretrain_model = BertModel.from_pretrained("bert-base-chinese")tokens = tokenizer.encode("春眠不觉晓",max_length=12,padding="max_length", truncation=True)
print(tokens)
print("----------------------")
print(tokenizer("春眠不觉晓",max_length=12,padding="max_length",truncation=True))
print("----------------------")tokens = torch.tensor([tokens]).int()
print(pretrain_model(tokens))

打印结果如图11-9所示。最终获得一个维度为[1,12,768]大小的矩阵,用以表示输入的文本。

本文节选自《从零开始大模型开发与微调:基于PyTorch与ChatGLM》,获得出版社和作者授权发布。

《从零开始大模型开发与微调:基于PyTorch与ChatGLM(人工智能技术丛书)》(王晓华)【摘要 书评 试读】- 京东图书 (jd.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/34658.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

推荐一款好用的编辑工具——onlyoffice桌面编辑器8.1

读者大大们好呀!!!☀️☀️☀️ 🔥 欢迎来到我的博客 👀期待大大的关注哦❗️❗️❗️ 🚀欢迎收看我的主页文章➡️寻至善的主页 文章目录 🔥前言🚀版本更新概览🚗文档编辑PDF编辑器…

搭建盲盒小程序的必要性

随着移动互联网的飞速发展,小程序作为一种新型的应用形态,已经深入人们的生活。而盲盒,作为一种独特的销售方式,因其神秘感和趣味性而备受年轻消费者的喜爱。当盲盒遇上小程序,便产生了一种全新的商业模式,…

Qt项目天气预报(5) - 根据JSON刷新天气信息+城市匹配

刷新当天天气 我们使用如下api接入,当然需要自己去 易客云天气API免费天气API接口|天气预报接口|全球天气API接口|气象预警|空气质量 (tianqiapi.com)注册后生成自己的对应id才可以使用 //专业天气v61 http://v1.yiketianqi.com/api?unescape1&versionv61&…

STM32学习-HAL库 串口通信

学完标准库之后,本来想学习freertos的,但是看了很多教程都是移植的HAL库程序,这里再学习一些HAL库的内容,有了基础这里直接学习主要的外设。 HAL库对于串口主要有两个结构体UART_InitTypeDef和UART_HandleTypeDef,前者…

白帽子的海外第一单,750刀

国际惯例,给兄弟们看图 这是我们师傅挖国外SRC的部分赏金截图 就问你!挖国外漏洞赚美金香不香! 现在国内SRC越来越卷了,越来越多的白帽子开始挖海外漏洞赚美金。海外SRC真的比国内赏金高很多,不说高危漏洞&#xff0…

MoneyPrinterPlus:AI自动短视频生成工具-腾讯云配置详解

MoneyPrinterPlus可以使用大模型自动生成短视频,其中的语音合成和语音识别部分需要借助于一些第三发云厂商的语音服务。 很多小伙伴可能不知道应该如何配置,这里给大家提供一个详细的腾讯云语音服务的配置教程。 项目已开源,代码地址&#…

计算几何系列——XCPC中计算几何一些题型杂谈(上)

本系列文章力求以简洁易懂的文字介绍计算几何中的基本概念,使读者快速入门,故不追求难度和深度,仅起到抛砖引玉的作用。 在XCPC中有一种题叫计算几何,这类题在大多数时候都作为一类金牌题甚至防AK题的难度出现,但是在…

Kotlin设计模式:代理模式详解

Kotlin设计模式:代理模式详解 在软件开发中,设计模式是解决常见问题的一种优雅方法。本文将介绍Kotlin中的代理模式(Proxy Pattern),其应用场景,以及如何通过实例代码实现这一模式。 代理模式的目的 代理…

DEtection TRansformer (DETR)与YOLO在目标检测方面的比较

1. 概述 计算机视觉中的目标检测是一个复杂而有趣的领域,它涉及到让计算机能够识别图像中的物体,并确定它们的位置。下面是DETR和YOLO这两种目标检测方法简单比较: 1.1 YOLO YOLO是一种非常流行的目标检测算法,它的核心思想是将…

一种502 bad gateway nginx/1.18.0的解决办法

背景:上线的服务突然挂掉了 step1,去后端日志查看,发现并无异常,就是请求无法被接收 step2,查看了nginx的错误日志,发现该文件为空 step3,查看了niginx的运行日志,发现了以下问题 [error] 38#…

Python为JSON解析和生成功能库之rapidjson使用详解

概要 在现代应用程序开发中,JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,被广泛应用于Web开发、数据传输和配置文件等场景。Python自带的json模块已经非常强大,但在处理大规模数据时,其性能可能无法满足需求。为了提高JSON处理效率,Python的rapidjs…

猫头虎分享:K8S优雅关机怎么实现?配置一下server.shutdown.graceful?

🚀 猫头虎分享:K8S优雅关机怎么实现?配置一下server.shutdown.graceful? 摘要 在云原生时代,Kubernetes(K8S)已经成为管理容器化应用的标准。然而,当我们需要优雅地关闭K8S中的Pod时&#xf…

yolov5模型pt转engine

目录 1. 环境准备1.1 安装tensorrt1.1.1 pip安装1.1.2 压缩包安装 2. pt转engine3. 转换过程中遇到的问题 1. 环境准备 1.1 安装tensorrt 1.1.1 pip安装 pip install tensorrt 1.1.2 压缩包安装 很可能会失败,最保险的方法是下载tensorRT的压缩包,比…

Pyecharts入门

数据可视化 Pyecharts简介 Apache ECharts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时&#…

冶金工业5G智能工厂工业物联数字孪生平台,推进制造业数字化转型

冶金工业5G智能工厂工业物联数字孪生平台,推进制造业数字化转型。传统生产方式难以满足现代冶金工业的发展需求,数字化转型成为必然趋势。通过引入5G、工业物联网和数字孪生等先进技术,冶金工业可以实现生产过程智能化、高效化和绿色化&#…

车辆网络安全开发

随着智能汽车的快速发展,车载软件的数量和复杂性不断增加,同时也带来了网络安全风险。智能汽车软件开发是实现车辆智能化、信息化的重要手段。在智能汽车软件的开发过程中,开发人员需要遵循一定的规范和标准,以确保软件的质量和安…

el-dialog使用::v-deep()穿透设置样式不生效,解决办法亲测有效!

场景&#xff1a; <el-dialogv-model"dialogVisible"width"800px":before-close"beforeClose"append-to-body:close-on-click-modal"false"title"增加文档"><template #footer><div style"text-align:c…

【MDK5问题】:MDK中的jlink正常下载,但是板子却没有任何反应

1、问题现象&#xff1a; 1、在MDK5中&#xff0c;jlink配置项如下图&#xff0c;没有看到异常情况和配置&#xff1a; 2、点击load下载到板子上&#xff0c;出现的现象是&#xff0c;下载提示下载完成&#xff0c;但是&#xff0c;板子却没有任何反应&#xff08;程序实现应该…

C++ | Leetcode C++题解之第190题颠倒二进制位

题目&#xff1a; 题解&#xff1a; class Solution { private:const uint32_t M1 0x55555555; // 01010101010101010101010101010101const uint32_t M2 0x33333333; // 00110011001100110011001100110011const uint32_t M4 0x0f0f0f0f; // 000011110000111100001111000011…

高考填报志愿策略 做好这几个步骤很重要

怎么填报合适的院校&#xff0c;怎么填报合适的专业&#xff0c;有时候比考试的分数还要重要&#xff0c;所谓“7分考&#xff0c;3分报”&#xff0c;要避免高分第就&#xff0c;那就得理清头绪&#xff0c;一起来了解一下高考填报志愿策略吧。 第1步从了解分数的基础上来了解…