计算机视觉 | 基于图像处理和边缘检测算法的黄豆计数实验

目录

  • 一、实验原理
  • 二、实验步骤
    • 1. 图像读取与预处理
    • 2. 边缘检测
    • 3. 轮廓检测
    • 4. 标记轮廓序号
  • 三、实验结果

Hi,大家好,我是半亩花海。 本实验旨在利用 Python 和 OpenCV 库,通过图像处理边缘检测算法实现黄豆图像的自动识别和计数,并在图像上标记每个黄豆的轮廓序号

一、实验原理

  • 灰度转换:将彩色图像转换为灰度图像,减少计算复杂度。
  • 高斯平滑:使用高斯模糊来减少图像噪声。
  • Canny边缘检测:检测图像中的边缘。
  • 轮廓查找:使用OpenCV的findContours函数检测图像中的轮廓。
  • 绘制轮廓和标记:在原始图像上绘制检测到的轮廓,并标记每个轮廓的序号。

二、实验步骤

1. 图像读取与预处理

import cv2
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('soybean.jpg')# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 平滑处理
blurred = cv2.GaussianBlur(gray, (11, 11), 0)

soybean.jpg 图片如下所示,可自取:

2. 边缘检测

  • cv2.Canny(blurred, 30, 150):使用Canny算法进行边缘检测,参数30和150分别是低阈值和高阈值。
# 使用Canny边缘检测
edges = cv2.Canny(blurred, 30, 150)

3. 轮廓检测

  • cv2.findContours(edges.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE):查找图像中的轮廓。RETR_EXTERNAL表示只检测外部轮廓,CHAIN_APPROX_SIMPLE表示使用简单的链式近似方法。
# 查找轮廓
contours, _ = cv2.findContours(edges.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

4. 标记轮廓序号

  • cv2.boundingRect(contour):计算轮廓的边界框,用于确定标注位置。
  • cv2.drawContours(image, [contour], -1, (0, 255, 0), 2):绘制轮廓,绿色线条,线宽为2像素。
  • cv2.putText(image, str(i + 1), (x + w // 2, y + h // 2), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2):在每个轮廓的中心位置标注序号,红色字体,字体大小为0.5,线宽为2像素。
# 绘制轮廓并标记序号
for i, contour in enumerate(contours):# 计算轮廓的边界框,用于确定标注位置x, y, w, h = cv2.boundingRect(contour)# 绘制轮廓cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)# 在轮廓内标注序号cv2.putText(image, str(i + 1), (x + w // 2, y + h // 2), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)

三、实验结果

  • plt.figure(figsize=(10, 10)):创建一个显示窗口,大小为10x10英寸。
  • plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)):将处理后的图像转换为RGB格式并显示。
  • plt.axis(‘off’):关闭坐标轴显示。
  • plt.show():显示图像。
  • print(f"黄豆数量: {len(contours)}"):输出检测到的黄豆数量。
# 显示结果图像
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.show()# 输出黄豆数量
print(f"黄豆数量: {len(contours)}")

实验结果表明:图像中的所有18个黄豆都被成功识别和标记,每个黄豆的轮廓被绿色线条清晰绘制,序号标记在轮廓中心位置附近。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/32064.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JetBrains GoLand 2024 mac/win版:高效开发,Go无止境

JetBrains GoLand 2024是一款专为Go语言开发者设计的集成开发环境(IDE),为开发者带来了更加高效、智能和便捷的编程体验。 GoLand 2024 mac/win版获取 在代码编辑方面,GoLand 2024提供了全行代码补全功能,通过利用先进的深度学习模型&#x…

力扣85.最大矩形

力扣85.最大矩形 遍历所有行作为底边 做求矩形面积&#xff08;84. class Solution {public:int maximalRectangle(vector<vector<char>>& matrix) {if (matrix.empty()) return 0;int n matrix.size(),m matrix[0].size();int res0;vector<int> li…

适耳贴合的气传导耳机,带来智能生活体验,塞那Z50耳夹耳机上手

现在大家几乎每天都会用到各种AI产品&#xff0c;蓝牙耳机也是我们必不可少的装备&#xff0c;最近我发现一款很好用的分体式气传导蓝牙耳机&#xff0c;它还带有一个具备AI功能的APP端&#xff0c;大大方便了我们日常的使用。这款sanag塞那Z50耳夹耳机我用过一段时间以后&…

开发指南033-数据库兼容

元芳&#xff0c;你怎么看&#xff1f; 单一数据库自身就有一些不同处理之处&#xff0c;如果一个平台要兼容所有数据库&#xff0c;就是难上加难&#xff0c;像isnull函数各数据库就不同。 对于这类问题&#xff0c;平台采用统一自定义函数解决&#xff0c;例如上面的round函…

模式分解的概念(下)-无损连接分解的与保持函数依赖分解的定义和判断、损失分解

一、无损连接分解 1、定义 2、检验一个分解是否是无损连接分解的算法 输入与输出 输入&#xff1a; 关系模式R&#xff08;U&#xff0c;F&#xff09;&#xff0c;F是最小函数依赖集 R上的一个分解 输出&#xff1a; 判断分解是否为无损连接分解 &#xff08;1&#x…

JAVA同城服务场馆门店预约系统支持H5小程序APP源码

&#x1f4f1;一键预约&#xff0c;畅享无忧体验&#x1f3e2; &#x1f680;一、开启预约新纪元 在繁忙的都市生活中&#xff0c;我们常常因为时间紧张而错过心仪的门店或场馆服务。然而&#xff0c;有了“门店场馆预约小程序”&#xff0c;这些问题都将迎刃而解。这款小程序…

群辉NAS中文件下载的三种方案

目录 一、迅雷套件 1、添加套件来源 2、安装套件 3、手机安装迅雷 二、qBittorrent套件 1、添加套件来源 2、改手工安装 3、更新后的问题 4、最后放弃DSM6 (1)上传文件手工安装 (2)添加套件来源 5、解决登陆报错 6、添加tracker 7、修改下载默认位置 8、手机…

c++之说_15|成员函数的const尾缀修饰 ( const const)

我记得我刚接触c的时候 遇到成员函数 右边尾部 写了个const 我当时就很蒙 不过慢慢的也从大佬口中获得一二经验了 class kj{public:void get(){printf("无修饰\n");}void get()const{printf("const 修饰\n");}}; 大概就是这个样子 当时我抓耳挠腮的看…

【yolov8语义分割】跑通:下载yolov8+预测图片+预测视频

1、下载yolov8到autodl上 git clone https://github.com/ultralytics/ultralytics 下载到Yolov8文件夹下面 另外&#xff1a;现在yolov8支持像包一样导入&#xff0c;pip install就可以 2、yolov8 语义分割文档 看官方文档&#xff1a;主页 -Ultralytics YOLO 文档 还能切…

图扑助力铝型材挤压:数字孪生引领智慧管理

通过图扑数字孪生技术&#xff0c;为铝型材挤压车间提供实时监控和优化管理方案。高精度三维建模和数据可视化提升了生产效率和管理透明度&#xff0c;推动智能制造和资源优化配置。

leetcode 二分查找·系统掌握 寻找旋转排序数组中的最小值II

题目&#xff1a; 题解&#xff1a; 本题比普通的寻找旋转排序数组中的最小值多了一个数组中的元素可以重复这一点。 这会时原来的思路出现一个漏洞&#xff08;大家感兴趣可以看看我做普通版寻找旋转排序数组最小值的思路&#xff09;&#xff0c;就是旋转后的数组中的第二个…

cas客户端流程详解(源码解析)--单点登录

博主之前一直使用了cas客户端进行用户的单点登录操作&#xff0c;决定进行源码分析来看cas的整个流程&#xff0c;以便以后出现了问题还不知道是什么原因导致的 cas主要的形式就是通过过滤器的形式来实现的&#xff0c;来&#xff0c;贴上示例配置&#xff1a; 1 <list…

Spring-bean

Spring 网站&#xff1a;spring.io 两个方面&#xff1a; 简化开发&#xff1a; IoCAOP 框架整合&#xff1a; MyBatis SpringFrameWork系统架构&#xff08;上层依赖下层&#xff09; 解决问题&#xff08;代码耦合度高——模块与模块之间的依赖程度&#xff09; 目标&am…

Pikachu靶场--越权漏洞

参考借鉴 pikachu之越权漏洞_pikachu越权漏洞-CSDN博客 水平越权 需要输入username和password进行登录 查看提示&#xff0c;获取username和password 输入其中一组账号信息进行登录 可以查看到个人信息 在URL中更改username的值-->回车 成功越权&#xff0c;登录到其他账号…

【文献及模型、制图分享】1985-2015年美国坦帕湾流域土地开发利用强度时空变化分析

公众号新功能 目前公众号新增以下等功能 1、处理GIS出图、Python制图、区位图、土地利用现状图、土地利用动态度和重心迁移图等等 2、核密度分析、网络od分析、地形分析、空间分析等等 3、地理加权回归、地理探测器、生态环境质量指数、地理加权回归模型影响因素分析、计算…

[极客大挑战 2020]Roamphp2-Myblog

又来喽 经过一番测试&#xff0c;发现文件包含&#xff0c;使用伪协议读取文件 例&#xff1a;php://filter/readconvert.base64-encode/resourcelogin //这里我只写php部分 //login.php <?php require_once("secret.php"); mt_srand($secret_seed); $_SESSION…

FPGA国内”薪“赛道-在医疗领域的应用

mian 免 ze 责 sheng 声 ming 明 以下观点仅代表个人观点&#xff0c;不代表任何公司或者行业 从下游应用市场来看&#xff0c;通信和工业市场份额位居FPGA芯片一二位&#xff0c;同时通信市场份额有望持续提升。但是目前通信和工业市场趋于稳定&#xff0c;FPGA厂商一直推AI市…

SpringBoot 实现RequestBodyAdvice封装统一接受类功能

一、相关往期文章 SpringBootVue实现AOP系统日志功能_aop的vue完整项目 Spring AOP (面向切面编程&#xff09;原理与代理模式—实例演示_面向切面aop原理详解 二、需求分析 按照一般情况&#xff0c;统一接受类可以像以下的方式进行处理&#xff1a; 如果不想使用 Request…

Vue75-路由传参3

一、在index.js中使用props参数 1-1、写法一&#xff1a;值为对象 此时&#xff0c;参数是固定写死的&#xff0c;不推荐&#xff01; 1-2、值为布尔值 此时只能收到params中的参数&#xff01; 1-3、值为函数 &#xff08;最强大&#xff09; 二、小结

火车头采集器Typecho采集发布模块插件

火车头采集器发布数据到Typecho系统网站应该怎么操作&#xff1f; 1. 火车头采集器Typecho采集发布插件下载安装&#xff1a; 火车头采集器Typecho采集发布模块插件下载地址-CSDN 2. 在火车头采集器软件导Typecho采集发布模块插件&#xff1b; 3. 填写Typecho系统文章对应的…