图论算法学习

图论

  • dfs是可一个方向去搜,不到黄河不回头,直到遇到绝境了,搜不下去了,再换方向(换方向的过程就涉及到了回溯)。
  • bfs是先把本节点所连接的所有节点遍历一遍,走到下一个节点的时候,再把连接节点的所有节点遍历一遍,搜索方向更像是广度,四面八方的搜索过程。

DFS

如何在二维矩阵中使用 DFS 搜索呢?如果你把二维矩阵中的每一个位置看做一个节点,这个节点的上下左右四个位置就是相邻节点,那么整个矩阵就可以抽象成一幅网状的「图」结构。

DFS (Depth-First Search) 是一种图遍历算法,用于探索或搜索图或树的节点。该算法从起始节点开始,尽可能深地探索每个分支,直到遇到没有未探索邻居的节点,然后回溯到上一个未探索的节点,并继续探索其他分支。这个过程一直持续到所有节点都被访问为止。

因为二维矩阵本质上是一幅「图」,所以遍历的过程中需要一个visited 布尔数组防止走回头路,如果你能理解下面这段代码,那么搞定所有岛屿系列题目都很简单。

二维矩阵遍历框架

// 二叉树遍历框架
void traverse(TreeNode root) {traverse(root.left);traverse(root.right);
}
//-------------------------------
// 二维矩阵遍历框架
void dfs(int[][] grid, int i, int j, boolean[][] visited) {//行和列int m = grid.length, n = grid[0].length;if (i < 0 || j < 0 || i >= m || j >= n) {// 超出索引边界return;}if (visited[i][j]) {// 已遍历过 (i, j)return;}// 进入节点 (i, j)visited[i][j] = true;dfs(grid, i - 1, j, visited); // 上dfs(grid, i + 1, j, visited); // 下dfs(grid, i, j - 1, visited); // 左dfs(grid, i, j + 1, visited); // 右
}
岛屿数量

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

class Solution {// 主函数,计算岛屿数量int numIslands(char[][] grid) {int res = 0;int m = grid.length, n = grid[0].length;// 遍历 gridfor (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (grid[i][j] == '1') {// 每发现一个岛屿,岛屿数量加一res++;// 然后使用 DFS 将岛屿淹了 与1相连的所有1 变为零 集体是一个岛屿dfs(grid, i, j);// 上下左右都淹了}}}return res;}// 从 (i, j) 开始,将与之相邻的陆地都变成海水void dfs(char[][] grid, int i, int j) {int m = grid.length, n = grid[0].length;// 参数是否正常if (i < 0 || j < 0 || i >= m || j >= n) {// 超出索引边界return;}if (grid[i][j] == '1') {grid[i][j] = '0';} else {return;}// 淹没上下左右的陆地dfs(grid, i + 1, j);dfs(grid, i, j + 1);dfs(grid, i - 1, j);dfs(grid, i, j - 1);}
}

为什么每次遇到岛屿,都要用 DFS 算法把岛屿「淹了」呢?主要是为了省事,避免维护 visited 数组。

因为 dfs 函数遍历到值为 0 的位置会直接返回,所以只要把经过的位置都设置为 0,就可以起到不走回头路的作用。

单词搜索(DFS算法) (回溯算法)

给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。

单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。

  • grid.length 返回 grid 数组的长度,即行数。
  • grid[0].length 返回 grid 数组的第一行的长度,即列数。
class Solution {boolean found = false;public boolean exist(char[][] board, String word) {int m = board.length, n = board[0].length;for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {dfs(board, i, j, word, 0);if (found) {return true;}}}return false;}// 从 (i, j) 开始向四周搜索,试图匹配 word[p..]void dfs(char[][] board, int i, int j, String word, int p) {if (p == word.length()) {// 整个 word 已经被匹配完,找到了一个答案found = true;return;}if (found) {// 已经找到了一个答案,不用再搜索了return;}int m = board.length, n = board[0].length;if (i < 0 || j < 0 || i >= m || j >= n) {return;}if (board[i][j] != word.charAt(p)) {return;}// 已经匹配过的字符,我们给它添一个负号作为标记,避免走回头路board[i][j] = (char)(-board[i][j]);// word[p] 被 board[i][j] 匹配,开始向四周搜索 word[p+1..]dfs(board, i + 1, j, word, p + 1);dfs(board, i, j + 1, word, p + 1);dfs(board, i - 1, j, word, p + 1);dfs(board, i, j - 1, word, p + 1);board[i][j] = (char)(-board[i][j]);}
}

BFS

广搜(bfs)是一圈一圈的搜索过程,和深搜(dfs)是一条路跑到黑然后再回溯。

广搜的搜索方式就适合于解决两个点之间的最短路径问题。

从起点出发,每次都尝试访问同一层的节点,如果同一层都访问完了,再访问下一层,最后广度优先搜索找到的路径就是从起点开始的最短合法路径

使用队列

代码框架
// 计算从起点 start 到终点 target 的最近距离
int BFS(Node start, Node target) {Queue<Node> q; // 核心数据结构Set<Node> visited; // 避免走回头路q.offer(start); // 将起点加入队列visited.add(start);while (q not empty) {int sz = q.size();/* 将当前队列中的所有节点向四周扩散 */for (int i = 0; i < sz; i++) {Node cur = q.poll();/* 划重点:这里判断是否到达终点 */if (cur is target)return step;/* 将 cur 的相邻节点加入队列 */for (Node x : cur.adj()) {if (x not in visited) {q.offer(x);visited.add(x);}}}}// 如果走到这里,说明在图中没有找到目标节点
}

队列 q 就不说了,BFS 的核心数据结构;cur.adj() 泛指 cur 相邻的节点,比如说二维数组中,cur 上下左右四面的位置就是相邻节点;visited 的主要作用是防止走回头路,大部分时候都是必须的,但是像一般的二叉树结构,没有子节点到父节点的指针,不会走回头路就不需要 visited。

二叉树的最小高度

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。


起点就是 root 根节点,终点就是最靠近根节点的那个「叶子节点」

class Solution {public int minDepth(TreeNode root) {if (root == null)return 0;Queue<TreeNode> q = new LinkedList<>();q.offer(root);// root 本身就是一层,depth 初始化为 1int depth = 1;while (!q.isEmpty()) {int sz = q.size();/* 将当前队列中的所有节点向四周扩散 */for (int i = 0; i < sz; i++) {TreeNode cur = q.poll();/* 判断是否到达终点 */if (cur.left == null && cur.right == null)return depth;/* 将 cur 的相邻节点加入队列 */if (cur.left != null)q.offer(cur.left);if (cur.right != null)q.offer(cur.right);}/* 这里增加步数 */depth++;}return depth;}
}
腐烂的橘子

上下左右相邻的新鲜橘子就是该腐烂橘子尝试访问的同一层的节点,路径长度就是新鲜橘子被腐烂的时间。我们记录下每个新鲜橘子被腐烂的时间,最后如果单元格中没有新鲜橘子,腐烂所有新鲜橘子所必须经过的最小分钟数就是新鲜橘子被腐烂的时间的最大值。

  • 一开始,我们找出所有腐烂的橘子,将它们放入队列,作为第 0 层的结点。
  • 然后进行 BFS 遍历,每个结点的相邻结点可能是上、下、左、右四个方向的结点,注意判断结点位于网格边界的特殊情况。
  • 由于可能存在无法被污染的橘子,我们需要记录新鲜橘子的数量。在 BFS 中,每遍历到一个橘子(污染了一个橘子),就将新鲜橘子的数量减一。如果 BFS 结束后这个数量仍未减为零,说明存在无法被污染的橘子。
  • Count 统计多少橘子 ,
class Solution {public int orangesRotting(int[][] grid) {// 边界 长宽int M = grid.length;int N = grid[0].length;Queue<int[]> queue = new LinkedList<>();//每一个元素都是一个一维数组 行和列// count 表示新鲜橘子的数量int count = 0; // 遍历二维数组 找出所有的新鲜橘子和腐烂的橘子for (int r = 0; r < M; r++) {for (int c = 0; c < N; c++) {// 新鲜橘子计数if (grid[r][c] == 1) {count++;// 腐烂的橘子就放进队列} else if (grid[r][c] == 2) {// 缓存腐烂橘子的坐标queue.add(new int[]{r, c});}}}// round 表示腐烂的轮数,或者分钟数int round = 0; // 如果有新鲜橘子 并且 队列不为空// 直到上下左右都触及边界 或者 被感染的橘子已经遍历完while (count > 0 && !queue.isEmpty()) {// BFS 层级 + 1round++;// 拿到当前层级的腐烂橘子数量, 因为每个层级会更新队列int n = queue.size();// 遍历当前层级的队列for (int i = 0; i < n; i++) {// 踢出队列(拿出一个腐烂的橘子)int[] orange = queue.poll();// 恢复橘子坐标int r = orange[0];int c = orange[1];// ↑ 上邻点 判断是否边界 并且 上方是否是健康的橘子if (r-1 >= 0 && grid[r-1][c] == 1) {// 感染它 grid[r-1][c] = 2;// 好橘子 -1 count--;// 把被感染的橘子放进队列 并缓存queue.add(new int[]{r-1, c});}// ↓ 下邻点 同上if (r+1 < M && grid[r+1][c] == 1) {grid[r+1][c] = 2;count--;queue.add(new int[]{r+1, c});}// ← 左邻点 同上if (c-1 >= 0 && grid[r][c-1] == 1) {grid[r][c-1] = 2;count--;queue.add(new int[]{r, c-1});}// → 右邻点 同上if (c+1 < N && grid[r][c+1] == 1) {grid[r][c+1] = 2;count--;queue.add(new int[]{r, c+1});}}}// 如果此时还有健康的橘子// 返回 -1// 否则 返回层级if (count > 0) {return -1;} else {return round;}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/30996.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

01_RISC-V 入门及指令集学习

参考文档 risc-v入门&#xff1a;https://blog.csdn.net/bebebug/article/details/128039038RISC-V OS&#xff1a;https://blog.csdn.net/bebebug/article/details/130551378riscv-spec文档&#xff1a;https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pd…

小摩法兴纷纷转多,看涨港股的时机来了吗?

恒生指数今日高开一度上涨89点报18520点&#xff0c;创近两周高。之后持续震荡下行&#xff1b;恒指临近中 午跌幅扩大&#xff0c;恒生科技指数一度跌近1.5%。截止收盘&#xff0c;恒生指数跌0.52%&#xff0c;盘面上&#xff0c;石油、煤炭、环保、建筑节能等板块涨幅居前&a…

java中的Random

Random 是 Java 中的一个内置类&#xff0c;它位于 java.util 包中&#xff0c;主要用于生成伪随机数。伪随机数是指通过一定算法生成的、看似随机的数&#xff0c;但实际上这些数是由确定的算法生成的&#xff0c;因此不是真正的随机数。然而&#xff0c;由于这些数在统计上具…

新手下白对Latex下手啦!

第一次使用latex&#xff0c;浅浅地记录一下子吧。 首先我们一般会下载一个latex模板&#xff0c;如果想知道咋下载&#xff0c;评论去告诉俺哟&#xff01; 新手小白首先要看懂结构&#xff0c;不然完全下不了手&#xff0c;本文就以IEEE的模板&#xff0c;从头往下讲咯~ 第…

网页的CSS和JavaScript文件没有自动更新, 解决办法

项目场景&#xff1a; 无人值守的场馆预定以及管理 问题描述 更新了CSS和JavaScript&#xff0c;访问始终样式不对 原因分析&#xff1a; 浏览器缓存了你的CSS和JavaScript文件 浏览器缓存了你的CSS和JavaScript文件。当文件的修改时间戳&#xff08;last-modified&#xff…

QT处理Unix信号

从Unix信号处理程序中调用Qt函数 你不能从Unix信号处理程序中调用Qt函数。适用于标准POSIX规则:只能从信号处理程序调用异步信号安全的函数。有关可以从Unix信号处理程序调用的函数的完整列表&#xff0c;请参阅Signal Actions。 但不要绝望&#xff0c;有一种方法可以在Qt中使…

力扣503.下一个更大元素II

力扣503.下一个更大元素II 循环数组实现&#xff1a;断环成链 开二倍数组做单调栈 class Solution {public:vector<int> nextGreaterElements(vector<int>& nums) {int n nums.size();vector<int> res(n);stack<int> st;for(int i 2*n-1;i>…

OpenAI 推出“模型规范”:塑造责任制的人工智能的框架

为了提升人工智能开发的责任性和透明度&#xff0c;OpenAI 最近发布了一份名为“模型规范”的初步草案。这份文件首次明确了其 API 和 ChatGPT 模型行为的指导原则&#xff0c;并通过博客形式对外公布。 OpenAI 在博客中解释说&#xff1a;“我们之所以发布此文档&#xff0c;…

云渲染全攻略:平台精挑细选与技巧指南

在数字化浪潮中&#xff0c;创意产业的每一步进步都得益于技术革新。云渲染技术以其卓越的效率和灵活性&#xff0c;已成为推动影视、建筑、游戏等创意行业快速发展的关键力量。本文将为您提供一份详尽的云渲染指导手册&#xff0c;涵盖平台挑选策略和操作技巧&#xff0c;助您…

Centos7.9安装kerberos

文章目录 一、背景二、Kerberos安装部署2.1kerberos服务端必要软件安装2.2配置krb5.conf2.3配置kdc.conf2.4配置kadm5.acl2.5创建Kerberos数据库2.6启动Kerberos服务2.7创建Kerberos管理员principal2.8客户端安装kerberos2.9Kerberos功能验证 本人其他相关文章链接 一、背景 亲…

Redis 数据恢复及持久化策略分析

在分布式系统中&#xff0c;Redis作为高性能的键值存储数据库&#xff0c;广泛应用于缓存、会话管理、消息队列等场景。对于Redis数据的可靠性&#xff0c;持久化是至关重要的一环。当Redis宕机时&#xff0c;如何恢复数据成为一个关键问题。这篇文章将详细分析Redis的数据恢复…

科普文章:怎么远程监控电脑屏幕?三种监控电脑屏幕的方法

远程监控公司电脑屏幕是一项重要的管理手段&#xff0c;它不仅有助于提升工作效率&#xff0c;还能确保公司信息安全和合规性。随着远程办公的普及&#xff0c;这一需求变得日益重要。下面我将详细介绍几种实现远程监控公司电脑屏幕的方法&#xff0c;以及实施过程中需要注意的…

线程池的简介

定义 线程池就是使用多线程的方式&#xff0c;将任务添加到队列中任务都是runnable或者callable的实现类 优点 线程和任务分离&#xff0c;任务可以复用线程池统一管理线程&#xff0c;线程可以复用避免因为开启和销毁线程造成的资源浪费 官方线程池的参数分析 深度理解 线程池…

JVM 相关知识整理

文章目录 前言JVM 相关知识整理1. 新生代和老年代2. 对象的分配过程3. Full GC /Major GC 触发条件4. 逃逸分析4.1.示例4.2. 使用逃逸分析&#xff0c;编译器可以对代码做如下优化 5. 对象的内存分配6. Minor GC 与 Major GC/Full GC的比较:7. 什么对象进入老年代7.1. 大对象直…

2024年金地杯山西省大学生数学建模竞赛B题D题论文代码分析

2024金地杯数学建模B题和金地杯数学建模D题32页论文和代码已完成&#xff0c;代码为B题D题全部问题的代码&#xff0c;论文包括摘要、问题重述、问题分析、模型假设、符号说明、模型的建立和求解&#xff08;问题1模型的建立和求解、问题2模型的建立和求解、问题3模型的建立和求…

【ARMv8/v9 GIC 系列 4.1 -- GIC CPU Interface 访问支持情况】

文章目录 GIC CPU Interface 访问支持Bit[27:24]: GIC CPU接口汇编代码实现访问小结 GIC CPU Interface 访问支持 在ARMv8架构中&#xff0c;ID_AA64PFR0_EL1是一个系统寄存器&#xff0c;提供了有关处理器功能的详绀信息。这个寄存器的位[27:24]专门用于描述GIC&#xff08;通…

Webpack源码深入-compiler

compiler 上述中执行cli.run(arg)就是执行webpack-cli.js中的run方法&#xff0c;在执行的过程中&#xff0c;会加载webpack/lib/webpack.js中&#xff0c;得到this.webpack模块&#xff0c;然后运行this.runWebpack()方法&#xff0c;创建compiler对象 创建compiler 创建co…

Microsoft Edge浏览器安装crx拓展插件教程

1、首先打开edge浏览器&#xff0c;点击顶部地址栏。 2、在地址栏中输入"edge://flags/#extensions-on-edge-urls"并按下回车。2、在地址栏中输入"edge://flags/#extensions-on-edge-urls"并按下回车。 3、进入后&#xff0c;将图示选项改为“已禁用”。 …

微信小程序轮播图

效果图 详情可见 微信小程序 参照&#xff1a;swiper | uni-app官网 代码&#xff1a; <!--轮播图-- > <swiper interval"2000" autoplay"true" circular"true" style"height: 300px;"><swiper-item style&qu…

ultralytics中常用的函数和类

Ultralytics是一个用于目标检测的开源框架&#xff0c;基于YOLO&#xff08;You Only Look Once&#xff09;模型。以下是Ultralytics中一些常用的函数和类&#xff0c;涵盖了数据加载、模型训练、推理等方面&#xff1a; 数据加载 1.LoadImages 作用&#xff1a;加载静态图…