深度学习 --- stanford cs231学习笔记五(训练神经网络的几个重要组成部分之二,数据的预处理)

训练神经网络的几个重要组成部分 二

2 Data Preprocessing数据的预处理

数据预处理的几种方法


2,1 数据的零点中心化

        数据的零点中心化的目的就是为了把数据的整体分布拉回到原点附近,也就是让数据的整体均值变为0。


 2,2 数据的标准化

        数据的标准化这个词比较难理解,从统计学的角度讲,经过这一步的处理,原始数据的标准差会变为1。换句话说,我的个人理解是如果原始数据分散的比较开,也就是高斯曲线的sigma比较大,则经过这一步处理后,分散的比较开的数据会被拉拢回来。比如说下图黄色曲线的数据分布。

        如果,原始数据本来分布的就过于集中,经过这一步处理后,数据反而会变的相对松散。例如下图蓝色曲线的数据分布。

        数据的零点中心化和标准化是神经网络的数据预处理中最为常见的两个方法。可以用公式总结为:

y=\frac{x-mean}{sigma}

其中,mean表示均值,sigma表示标准差。下面我通过两个例子看看这一过程究竟发生了什么。


2,3 以一维数据为例:

        下图是我在jupyter notebook中所画的5个狗狗身高的一维数据集。x表示的是样本数,y表示的是该样本的高度。

import numpy as np
import matplotlib.pyplot as pltdata = [600,470,170,430,300]
num=len(data)
x=np.arange(num)
plt.figure()
plt.stem(x,data,label='dog(mm)')
plt.legend()

分别求出这组数据的mean和sigma并在图中表示出来

print('data=',data)
mean_data=np.mean(data)
print('mean=',mean_data)
sigma_data=np.std(data)
print('sigma=',sigma_data)

plt.figure
plt.stem(x,data,label='dog(mm)')
plt.plot(x,[mean_data]*num,'r-',label='mean')
plt.plot(x,[mean_data+sigma_data]*num,'b--',label='mean+sigma')
plt.plot(x,[mean_data-sigma_data]*num,'b--',label='mean-sigma')
plt.legend(loc='upper right')

​原始数据的直方图 

plt.hist(data)
plt.title('Histogram of dog(mm)')

减去均值后的数据与直方图: 

        与原始数据相比减去均值后的数据均值为0,也就是说,原来以394mm为中心分布的数据变成了以0为中心分布的数据。

plt.hist(data1)
plt.title('Histogram of dog-mean (mm)')

​减去均值后再除以标准差后的数据及其分布:

        除以标准差之后的数据,整个数据的标准差会变为1。这一变化在图像上会表现为数据的分布从原始状态中比较分散的情况,变成了比较集中的分布。        

data2=data1/sigma_data
mean_data2=np.mean(data2)
sigma_data2=np.std(data2)
print('(dog-mean)/std=',data2)
print('mean=',mean_data2)
print('sigma=',sigma_data2)
plt.figure
plt.stem(x,data2,label='dog(mm)')
plt.plot(x,[mean_data2]*num,'r-',label='mean')
plt.plot(x,[mean_data2+sigma_data2]*num,'b--',label='mean+sigma')
plt.plot(x,[mean_data2-sigma_data2]*num,'b--',label='mean-sigma')
plt.legend(loc='upper right')

plt.hist(data2)
plt.title('Histogram of (dog-mean)/std (mm)')


2,4 以二维鸢尾花数据集数据为例:

原始数据:

from sklearn.datasets import load_iris# 加载 Iris 数据集
iris = load_iris()
X = iris.data[:, :2]  # 只取前两个特征作为示例
print('X.size=',X.shape)
y = iris.target# 绘制散点图
fig,ax=plt.subplots(figsize=(8, 6))
scatter = ax.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', s=50, alpha=0.8, edgecolors='k')
plt.title('Scatter Plot of Iris Dataset')
plt.xlabel('x=Sepal Length (cm)')
plt.ylabel('y=Sepal Width (cm)')
plt.colorbar(scatter, label='Species', ticks=[0, 1, 2], format=lambda i, _: iris.target_names[int(i)])# 绘制 x 轴和 y 轴
ax.axhline(0, color='black', linewidth=3)  # 绘制水平的 x 轴
ax.axvline(0, color='black', linewidth=3)  # 绘制垂直的 y 轴plt.show()

        在二维坐标系中,x轴和y轴分别表示鸢尾花花瓣的长度和宽度,各150个数据。 注意,此时的数据分布是偏离原点的。

plt.hist(X)
plt.title('Histogram of x,y(cm)')

分别计算两个维度的mean和std:

col_avg=np.mean(X,axis=0)
print('col_avg.size=',col_avg.shape)
print('x_avg=',col_avg[0],'(cm)')
print('y_avg=',col_avg[1],'(cm)')col_sigma=np.std(X,axis=0)
print('col_sigma.size=',col_sigma.shape)
print('x_sigma=',col_sigma[0],'(cm)')
print('y_sigma=',col_sigma[1],'(cm)')

x,y两个维度的数据各自减去其均值:

        先按列求各个维度的均值,然后让各自维度的数据减去各自维度的均值。 

#reshape con_avg
col_avg2d=np.tile(col_avg,(X.shape[0],1))
print('col_avg2d.size=',col_avg2d.shape)
X-=col_avg2d
print('X.size=',X.shape)
# 绘制散点图
fig,ax=plt.subplots(figsize=(8, 6))
scatter = ax.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', s=50, alpha=0.8, edgecolors='k')
plt.title('Scatter Plot of Iris Dataset')
plt.xlabel('x=Sepal Length (cm)')
plt.ylabel('y=Sepal Width (cm)')
plt.colorbar(scatter, label='Species', ticks=[0, 1, 2], format=lambda i, _: iris.target_names[int(i)])# 绘制 x 轴和 y 轴
ax.axhline(0, color='black', linewidth=3)  # 绘制水平的 x 轴
ax.axvline(0, color='black', linewidth=3)  # 绘制垂直的 y 轴plt.show()

         减去均值后的数据分布是以原点为中心的。

plt.hist(X)
plt.title('Histogram of x,y(cm)')

在直方图中也可以看到新的数据集是以0为中心的。 

两个维度分别除以各自维度的标准差:

#reshape con_sigma
col_sigma2d=np.tile(col_sigma,(X.shape[0],1))
print('col_sigma2d.size=',col_sigma2d.shape)
X/=col_sigma2d
print('X.size=',X.shape)
# 绘制散点图
fig,ax=plt.subplots(figsize=(8, 6))
scatter = ax.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', s=50, alpha=0.8, edgecolors='k')
plt.title('Scatter Plot of Iris Dataset')
plt.xlabel('x=Sepal Length (cm)')
plt.ylabel('y=Sepal Width (cm)')
plt.colorbar(scatter, label='Species', ticks=[0, 1, 2], format=lambda i, _: iris.target_names[int(i)])# 绘制 x 轴和 y 轴
ax.axhline(0, color='black', linewidth=3)  # 绘制水平的 x 轴
ax.axvline(0, color='black', linewidth=3)  # 绘制垂直的 y 轴plt.show()

        如果原始数据分布的较为集中(即,标准差<1),除以标准差之后数据的分布会变得相对松散。如果原始数据分布的较为分散(即,标准差>1),除以标准差之后数据的分布会变得相对集中。

col_avg=np.mean(X,axis=0)
print('col_avg.size=',col_avg.shape)
print('x_avg=',col_avg[0],'(cm)')
print('y_avg=',col_avg[1],'(cm)')col_sigma=np.std(X,axis=0)
print('col_sigma.size=',col_sigma.shape)
print('x_sigma=',col_sigma[0],'(cm)')
print('y_sigma=',col_sigma[1],'(cm)')

经过预处理后的数据,均值为0,标准差为1. 

plt.hist(X)
plt.title('Histogram of x,y(cm)')


 2,5 在实际应用中数据预处理的常用方法


(全文完) 

--- 作者,松下J27

 参考文献(鸣谢): 

1,Stanford University CS231n: Deep Learning for Computer Vision

2,训练神经网络(第一部分)_哔哩哔哩_bilibili

3,10 Training Neural Networks I_哔哩哔哩_bilibili

4,Schedule | EECS 498-007 / 598-005: Deep Learning for Computer Vision 

5,标准差和方差

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/30898.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JDBC(简介、入门与IDEA中导入MySQL的驱动)

&#xff08;建议学完 MySQL 的基础部分&#xff09; JDBC——简而言之&#xff1a;用 Java 语言操作数据库。 Java DataBase Connectivity&#xff08;Java 语言连接数据库&#xff09; 目录 一、引言 &#xff08;1&#xff09;基本介绍 &#xff08;2&#xff09;JDBC 简…

[信号与系统]傅里叶变换、卷积定理、和为什么时域的卷积等于频域相乘。

前言 最近学习以下IIR滤波器和FIR滤波器 前置 1. 时域和频域 时域和频域代表着频率和时间与振幅的一一对应关系 2. 卷积运算 关于卷积的定义&#xff0c;详情请看 这篇文章能让你明白卷积 卷积运算是一种数学运算&#xff0c;广泛应用于信号处理、图像处理、控制系统和概…

【ARMv8/v9 GIC 系列 2 -- GIC SPI 中断的 enable和 disable 配置】

文章目录 GIC 中断 Enable 和 DisableGICD_ISENABLER<n>GICD_ICENABLER<n>参数 n使用举例代码实现注意事项 GIC 中断 Enable 和 Disable 在ARMv8架构中&#xff0c;通用中断控制器&#xff08;GIC&#xff09;负责管理处理器的中断。为了控制和管理这些中断&#…

网络安全管理组织架构复习

文章目录 安全管理机构岗位设置安全要求要求解读 安全管理机构 安全管理的重要实施条件就是有一个统一指挥、协调有序、组织有力的安全管理机构,这是网络安全管理得以实施、推广的基础。 通过构建从单位最高管理层到执行层及具体业务运营层的组织体系&#xff0c;可以明确各个…

【HarmonyOS4学习笔记】《HarmonyOS4+NEXT星河版入门到企业级实战教程》课程学习笔记(十四)

课程地址&#xff1a; 黑马程序员HarmonyOS4NEXT星河版入门到企业级实战教程&#xff0c;一套精通鸿蒙应用开发 &#xff08;本篇笔记对应课程第 22 节&#xff09; P22《21.ArkUI-实现摇杆功能》 本节我们将小鱼动画案例中的按钮控制改为摇杆控制&#xff0c;用来熟悉和巩固…

【多模态论文】CLIP(Contrastive Language-Image Pre-training)

论文&#xff1a;Learning Transferable Visual Models From Natural Language Supervision 链接&#xff1a;https://arxiv.org/abs/2103.00020 摘要 问题&#xff1a; 对预定的类别进行预测&#xff0c;这种有监督的训练形式受限于额外标记数据 。如何利用图像的原始文本来获…

图像数字化基础

一、像素 1、获取图像指定位置的像素 import cv2 image cv2.imread("E:\\images\\2.png") px image[291,218] print("坐标(291,218)上的像素的BGR值是&#xff1a;",px) &#xff08;1&#xff09;RGB色彩空间 R通道&#xff1a;红色通道 G通道&…

RH850---注意问题积累--1

硬件规格(引脚分配&#xff0c;内存映射&#xff0c;外设功能规格、电气特性、时序图)和操作说明 注意:有关使用的详细信息&#xff0c;请参阅应用说明 ---------外围函数。。。 1:存储指令完成与后续同步指令的一代 当控制寄存器被存储指令更新时&#xff0c;从存储的执行开始…

南京邮电大学计算机网络实验二(网络路由器配置RIP协议)

文章目录 一、 实验目的和要求二、 实验环境(实验设备)三、 实验步骤四、实验小结&#xff08;包括问题和解决方法、心得体会、意见与建议等&#xff09;五、报告资源 一、 实验目的和要求 掌握思科路由器的运行过程&#xff0c;掌握思科路由器的硬件连线与接口&#xff0c;掌…

VBA学习(13):获取多层文件夹内文件名并建立超链接

代码使用了FileSystemObject对象和递归的方法实现文件夹和文件的遍历功能。分别将文件夹名称和文件名提取在表格的A/B列&#xff0c;并对文件名创建了超链接。 示例代码如下&#xff1a; Sub AutoAddLink()Dim strFldPath As StringWith Application.FileDialog(msoFileDialog…

如何下载DVS Gesture数据集?解决tonic.datasets.DVSGesture错误HTTP Error 403: Forbidden

1 问题 DVSGesture数据集是一个专注于动态视觉传感&#xff08;Dynamic Vision Sensor, DVS&#xff09;技术的数据集&#xff0c;它包含了基于事件的图像记录&#xff0c;用于手势识别任务。DVSGesture数据集由一系列动态图像组成&#xff0c;这些图像是通过动态视觉传感器捕…

抖音矩阵系统搭建,AI剪辑短视频,一键管理矩阵账号

目录 前言&#xff1a; 一、抖音矩阵系统有哪些功能&#xff1f; 1.AI智能文案 2.多平台账号授权 3.多种剪辑模式 4. 矩阵一键发布&#xff0c;智能发布 5.抖音爆店码功能 6.私信实时互动 7.去水印及外链 二、抖音矩阵系统可以解决哪些问题&#xff1f; 总结&#xff…

理解HTTP请求格式

HTTP概念 HTTP全称HyperTextTransfer Protocol(超文本传输协议)是一种用于分布式、协作式和超媒体信息系统的应用层协议&#xff1b;HTTP是一个客户端&#xff08;用户&#xff09;和服务端&#xff08;网站&#xff09;之间请求和响应的标准。 HTTP 协议是以 ASCII 码传输&…

Gobject tutorial 八

The GObject base class Object memory management Gobject的内存管理相关的API很复杂&#xff0c;但其目标是提供一个基于引用计数的灵活的内存管理模式。 下面我们来介绍一下&#xff0c;与管理引用计数相关的函数。 Reference Count 函数g_object_ref和g_object_unref的…

怎么将几段音频合并在一起,试试这几个音频拼接小妙招

怎么将多个音频合并在一起呢&#xff1f;音频是我们日常工作生活中常见的文件&#xff0c;音频与我们息息相关&#xff0c;无论你是音乐爱好者&#xff0c;还是喜欢记录生活中的声音&#xff0c;都离不开音频。因此我们会遇到关于很多音频剪辑的难题&#xff0c;就像今天小编给…

usb摄像头应用编程

作者简介&#xff1a; 一个平凡而乐于分享的小比特&#xff0c;中南民族大学通信工程专业研究生在读&#xff0c;研究方向无线联邦学习 擅长领域&#xff1a;驱动开发&#xff0c;嵌入式软件开发&#xff0c;BSP开发 作者主页&#xff1a;一个平凡而乐于分享的小比特的个人主页…

conda install xformers -c xformers/label/dev 的安装问题

在StableSR项目框架中&#xff0c;需要执行 conda install xformers -c xformers/label/dev 但是报错&#xff0c;错误显示&#xff0c;版本不匹配&#xff0c;如下所示&#xff1a; 我改用pip来安装&#xff0c;好像就不报错了&#xff1a; pip install xformers

javaWeb项目-ssm+vue企业台账管理平台功能介绍

本项目源码&#xff1a;javaweb项目ssm-vue企业台账管理平台源码-说明文档资源-CSDN文库 项目关键技术 开发工具&#xff1a;IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7 框架&#xff1a;ssm、Springboot 前端&#xff1a;Vue、ElementUI 关键技术&#xff1a;springboo…

vue项目——前端CryptoJS加密、解密

1、vue项目需要安装CryptoJS安装包 npm install crypto-js 2、在项目中引入CryptoJS import CryptoJS from crypto-js 3、使用&#xff0c;代码如下 // 此处key为16进制let key jiajiajiajiajiajiajiajia;console.log(密钥&#xff1a;, key);// key格式化处理key Crypt…

【前端开发工具】VS Code安装和使用

文章目录 一、前言二、下载三、安装四、配置五、使用5.1 导入项目5.2 本地运行项目5.3 修改界面文案&#xff0c;验证效果5.4 添加日志打印5.5 代码调试5.6 代码提交到Git仓库 六、总结 一、前言 本文介绍一下在前端vue项目中&#xff0c;VS Code的安装和配置。 什么是VS Code…