[信号与系统]傅里叶变换、卷积定理、和为什么时域的卷积等于频域相乘。

前言

最近学习以下IIR滤波器和FIR滤波器

前置

1. 时域和频域

时域和频域代表着频率和时间与振幅的一一对应关系
在这里插入图片描述

在这里插入图片描述

2. 卷积运算

关于卷积的定义,详情请看 这篇文章能让你明白卷积

卷积运算是一种数学运算,广泛应用于信号处理、图像处理、控制系统和概率论等领域。卷积运算可以看作是两个函数之间的一种积分操作,用于描述一个函数在另一个函数上的“滑动”效果。

连续卷积:

对于连续函数 f ( t ) f(t) f(t) g ( t ) g(t) g(t)它们的卷积定义为:

( f ∗ g ) ( t ) = ∫ − ∞ ∞ f ( τ ) g ( t − τ ) d τ (f * g)(t) = \int_{-\infty}^{\infty} f(\tau) g(t - \tau) \, d\tau (fg)(t)=f(τ)g(tτ)dτ

离散卷积

对于离散函数 f [ n ] f[n] f[n] g [ n ] g[n] g[n],他们的卷积定义为:

( f ∗ g ) [ n ] = ∑ k = − ∞ ∞ f [ k ] g [ n − k ] (f * g)[n] = \sum_{k=-\infty}^{\infty} f[k] g[n - k] (fg)[n]=k=f[k]g[nk]

卷积运算的性质

1. 交换律
f ∗ g = g ∗ f f * g = g * f fg=gf
这意味着两个函数的卷积不受顺序影响。

2. 结合律(结合性)
( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) (f * g) * h = f * (g * h) (fg)h=f(gh)
这意味着多重卷积的计算顺序可以随意改变。

3.分配律
f ∗ ( g + h ) = ( f ∗ g ) + ( f ∗ h ) f * (g + h) = (f * g) + (f * h) f(g+h)=(fg)+(fh)

这意味着卷积运算对加法是分配的。

4. 与冲激函数的卷积(单位冲激函数)

对于单位冲激函数 δ ( t ) \delta(t) δ(t)有:

f ∗ δ = f f * \delta = f fδ=f
这意味着任何函数与单位冲激函数的卷积等于该函数本身。

5.平移性

f ( t − t 0 ) ∗ g ( t ) = ( f ∗ g ) ( t − t 0 ) f(t - t_0) * g(t) = (f * g)(t - t_0) f(tt0)g(t)=(fg)(tt0)
这意味着函数的平移在卷积后仍然保留。

卷积定理

在傅里叶变换域中,卷积运算可以转化为点乘运算。具体来说,如果 F ( ω ) F(\omega) F(ω) G ( ω ) G(\omega) G(ω)分别是 f ( t ) f(t) f(t) g ( t ) g(t) g(t) 的傅里叶变换,那么:

F { f ∗ g } = F { f } ⋅ F { g } \mathcal{F}\{f * g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\} F{fg}=F{f}F{g}

反之亦然,即傅里叶变换的点乘可以通过逆傅里叶变换转化为时域的卷积运算。

3. 傅里叶变换

傅里叶变换将一个时域信号转换到频域,使得可以分析信号的频率成分。对于非周期信号,傅里叶变换定义为:

F ( w ) = ∫ − ∞ ∞ f ( t ) e − j π t d t F(w) = \int_{-\infty}^{\infty} f(t) e^{-j\pi t} \, dt F(w)=f(t)etdt

其中 F ( w ) F(w) F(w)是频域表示,称为频谱。 f ( t ) f(t) f(t)是时域信号,w是角频率

逆傅里叶变换可以将频域信号转换回时域:

f ( t ) = 1 2 π ∫ − ∞ ∞ F ( w ) e j π t d w f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} F(w) e^{j\pi t} \, dw f(t)=2π1F(w)etdw

关键点包括:

  1. 频域与时域的对应关系:时域信号可以通过傅里叶变换转换到频域,反之亦然。这提供了分析和处理信号的新方法。

  2. 频谱:傅里叶变换的结果 F ( w ) F(w) F(w)称为信号的频谱,表示信号在不同频率成分上的分布。

  3. 正交性 : 正弦和余弦函数是正交的,这使得傅里叶级数能够分解任何周期信号,而傅里叶变换能够分解任何非周期信号。

  4. 卷积定理 : 时域中的卷积对应于频域中的乘积,这大大简化了信号处理中的卷积运算。

我们常见的其实会由这个卷积定理延申出来一个定理:

为了接下来的这个问题,我们需要用到一些傅里叶变换的性质:

1. 线性性质

傅里叶变换是线性的。对于任意两个信号 x 1 ( t ) x_1(t) x1(t) x 2 ( t ) x_2(t) x2(t),以及任意常数 a a a b b b,有:

F { a x 1 ( t ) + b x 2 ( t ) } = a X 1 ( ω ) + b X 2 ( ω ) \mathcal{F}\{a x_1(t) + b x_2(t)\} = a X_1(\omega) + b X_2(\omega) F{ax1(t)+bx2(t)}=aX1(ω)+bX2(ω)

2. 平移性质

如果一个信号 x ( t ) x(t) x(t) 在时域上平移 t 0 t_0 t0,其傅里叶变换为:

F { x ( t − t 0 ) } = X ( ω ) e − i ω t 0 \mathcal{F}\{x(t - t_0)\} = X(\omega) e^{-i\omega t_0} F{x(tt0)}=X(ω)et0

3. 调制性质

如果一个信号 x ( t ) x(t) x(t) 在时域上乘以一个复指数函数 e i ω 0 t e^{i\omega_0 t} eiω0t,其傅里叶变换为:

F { x ( t ) e i ω 0 t } = X ( ω − ω 0 ) \mathcal{F}\{x(t) e^{i\omega_0 t}\} = X(\omega - \omega_0) F{x(t)eiω0t}=X(ωω0)

4. 微分性质

如果一个信号 x ( t ) x(t) x(t) 的导数 d n x ( t ) d t n \frac{d^n x(t)}{dt^n} dtndnx(t) 存在,其傅里叶变换为:

F { d n x ( t ) d t n } = ( i ω ) n X ( ω ) \mathcal{F}\left\{\frac{d^n x(t)}{dt^n}\right\} = (i\omega)^n X(\omega) F{dtndnx(t)}=()nX(ω)

5. 卷积性质
如果两个信号 x 1 ( t ) x_1(t) x1(t) x 2 ( t ) x_2(t) x2(t) 的卷积 ( x 1 ∗ x 2 ) ( t ) (x_1 * x_2)(t) (x1x2)(t) 存在,其傅里叶变换为:

F { ( x 1 ∗ x 2 ) ( t ) } = X 1 ( ω ) ⋅ X 2 ( ω ) \mathcal{F}\{(x_1 * x_2)(t)\} = X_1(\omega) \cdot X_2(\omega) F{(x1x2)(t)}=X1(ω)X2(ω)

时域的卷积等于频域相乘

这是怎么来的呢,我们首先知道两个时域信号 x ( t ) x(t) x(t) h ( t ) h(t) h(t)的卷积:

( x ∗ h ) ( t ) = ∫ − ∞ ∞ x ( τ ) h ( t − τ ) d τ (x * h)(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) \, d\tau (xh)(t)=x(τ)h(tτ)dτ

我们得到X(f)和H(f)是他们分别通过傅里叶变换得到的频域表示,那么时域中的卷积 x ( t ) ∗ h ( t ) x(t) * h(t) x(t)h(t)就对应于频域中的乘积 X ( f ) ⋅ H ( f ) X(f)·H(f) X(f)H(f)
也就是说,时域中的复杂操作,我们最后用频域中的简单操作就可以指代了。

换句话说:

时域信号可以分解成一串不同频率正弦信号的叠加。根据卷积的分配率,两个时域信号的卷积最终可以展开成两两正弦信号的卷积的和。由于不同频率的正弦信号的卷积为0,所以最终只剩下相同频率的正弦信号的卷积。而卷积的结果就是频率不变,幅度相乘。
在频域里边就表现为直接相乘。

关于这句话,我们还可以生硬的推导一下:

推导

卷积定理的推导

我们首先知道两个时域信号 x ( t ) x(t) x(t) h ( t ) h(t) h(t) 的卷积定义为:

( x ∗ h ) ( t ) = ∫ − ∞ ∞ x ( τ ) h ( t − τ ) d τ (x * h)(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) \, d\tau (xh)(t)=x(τ)h(tτ)dτ

y ( t ) = ( x ∗ h ) ( t ) y(t) = (x * h)(t) y(t)=(xh)(t),则 y ( t ) y(t) y(t) x ( t ) x(t) x(t) h ( t ) h(t) h(t) 的卷积。

傅里叶变换

y ( t ) y(t) y(t) 进行傅里叶变换:

Y ( f ) = F { y ( t ) } = F { ∫ − ∞ ∞ x ( τ ) h ( t − τ ) d τ } Y(f) = \mathcal{F}\{y(t)\} = \mathcal{F}\left\{\int_{-\infty}^{\infty} x(\tau) h(t - \tau) \, d\tau\right\} Y(f)=F{y(t)}=F{x(τ)h(tτ)dτ}

根据傅里叶变换的线性性质,我们可以将积分符号放到傅里叶变换操作符的前面:

Y ( f ) = ∫ − ∞ ∞ x ( τ ) F { h ( t − τ ) } d τ Y(f) = \int_{-\infty}^{\infty} x(\tau) \mathcal{F}\{h(t - \tau)\} \, d\tau Y(f)=x(τ)F{h(tτ)}dτ

时移性质

根据傅里叶变换的时移性质,如果 h ( t − τ ) h(t - \tau) h(tτ) 的傅里叶变换为 H ( f ) H(f) H(f),则:

F { h ( t − τ ) } = H ( f ) e − i 2 π f τ \mathcal{F}\{h(t - \tau)\} = H(f) e^{-i2\pi f \tau} F{h(tτ)}=H(f)ei2πfτ

将其代入上式:

Y ( f ) = ∫ − ∞ ∞ x ( τ ) H ( f ) e − i 2 π f τ d τ Y(f) = \int_{-\infty}^{\infty} x(\tau) H(f) e^{-i2\pi f \tau} \, d\tau Y(f)=x(τ)H(f)ei2πfτdτ

分离变量

H ( f ) H(f) H(f) 从积分符号中分离出来:

Y ( f ) = H ( f ) ∫ − ∞ ∞ x ( τ ) e − i 2 π f τ d τ Y(f) = H(f) \int_{-\infty}^{\infty} x(\tau) e^{-i2\pi f \tau} \, d\tau Y(f)=H(f)x(τ)ei2πfτdτ

这里, ∫ − ∞ ∞ x ( τ ) e − i 2 π f τ d τ \int_{-\infty}^{\infty} x(\tau) e^{-i2\pi f \tau} \, d\tau x(τ)ei2πfτdτ x ( t ) x(t) x(t) 的傅里叶变换:

X ( f ) = ∫ − ∞ ∞ x ( τ ) e − i 2 π f τ d τ X(f) = \int_{-\infty}^{\infty} x(\tau) e^{-i2\pi f \tau} \, d\tau X(f)=x(τ)ei2πfτdτ

因此:

Y ( f ) = X ( f ) ⋅ H ( f ) Y(f) = X(f) \cdot H(f) Y(f)=X(f)H(f)

总结

我们得到了频域中的乘积:

Y ( f ) = X ( f ) ⋅ H ( f ) Y(f) = X(f) \cdot H(f) Y(f)=X(f)H(f)

这表明时域中的卷积对应于频域中的乘积。这就是卷积定理的内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/30895.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ARMv8/v9 GIC 系列 2 -- GIC SPI 中断的 enable和 disable 配置】

文章目录 GIC 中断 Enable 和 DisableGICD_ISENABLER<n>GICD_ICENABLER<n>参数 n使用举例代码实现注意事项 GIC 中断 Enable 和 Disable 在ARMv8架构中&#xff0c;通用中断控制器&#xff08;GIC&#xff09;负责管理处理器的中断。为了控制和管理这些中断&#…

网络安全管理组织架构复习

文章目录 安全管理机构岗位设置安全要求要求解读 安全管理机构 安全管理的重要实施条件就是有一个统一指挥、协调有序、组织有力的安全管理机构,这是网络安全管理得以实施、推广的基础。 通过构建从单位最高管理层到执行层及具体业务运营层的组织体系&#xff0c;可以明确各个…

【HarmonyOS4学习笔记】《HarmonyOS4+NEXT星河版入门到企业级实战教程》课程学习笔记(十四)

课程地址&#xff1a; 黑马程序员HarmonyOS4NEXT星河版入门到企业级实战教程&#xff0c;一套精通鸿蒙应用开发 &#xff08;本篇笔记对应课程第 22 节&#xff09; P22《21.ArkUI-实现摇杆功能》 本节我们将小鱼动画案例中的按钮控制改为摇杆控制&#xff0c;用来熟悉和巩固…

【多模态论文】CLIP(Contrastive Language-Image Pre-training)

论文&#xff1a;Learning Transferable Visual Models From Natural Language Supervision 链接&#xff1a;https://arxiv.org/abs/2103.00020 摘要 问题&#xff1a; 对预定的类别进行预测&#xff0c;这种有监督的训练形式受限于额外标记数据 。如何利用图像的原始文本来获…

图像数字化基础

一、像素 1、获取图像指定位置的像素 import cv2 image cv2.imread("E:\\images\\2.png") px image[291,218] print("坐标(291,218)上的像素的BGR值是&#xff1a;",px) &#xff08;1&#xff09;RGB色彩空间 R通道&#xff1a;红色通道 G通道&…

RH850---注意问题积累--1

硬件规格(引脚分配&#xff0c;内存映射&#xff0c;外设功能规格、电气特性、时序图)和操作说明 注意:有关使用的详细信息&#xff0c;请参阅应用说明 ---------外围函数。。。 1:存储指令完成与后续同步指令的一代 当控制寄存器被存储指令更新时&#xff0c;从存储的执行开始…

南京邮电大学计算机网络实验二(网络路由器配置RIP协议)

文章目录 一、 实验目的和要求二、 实验环境(实验设备)三、 实验步骤四、实验小结&#xff08;包括问题和解决方法、心得体会、意见与建议等&#xff09;五、报告资源 一、 实验目的和要求 掌握思科路由器的运行过程&#xff0c;掌握思科路由器的硬件连线与接口&#xff0c;掌…

VBA学习(13):获取多层文件夹内文件名并建立超链接

代码使用了FileSystemObject对象和递归的方法实现文件夹和文件的遍历功能。分别将文件夹名称和文件名提取在表格的A/B列&#xff0c;并对文件名创建了超链接。 示例代码如下&#xff1a; Sub AutoAddLink()Dim strFldPath As StringWith Application.FileDialog(msoFileDialog…

如何下载DVS Gesture数据集?解决tonic.datasets.DVSGesture错误HTTP Error 403: Forbidden

1 问题 DVSGesture数据集是一个专注于动态视觉传感&#xff08;Dynamic Vision Sensor, DVS&#xff09;技术的数据集&#xff0c;它包含了基于事件的图像记录&#xff0c;用于手势识别任务。DVSGesture数据集由一系列动态图像组成&#xff0c;这些图像是通过动态视觉传感器捕…

抖音矩阵系统搭建,AI剪辑短视频,一键管理矩阵账号

目录 前言&#xff1a; 一、抖音矩阵系统有哪些功能&#xff1f; 1.AI智能文案 2.多平台账号授权 3.多种剪辑模式 4. 矩阵一键发布&#xff0c;智能发布 5.抖音爆店码功能 6.私信实时互动 7.去水印及外链 二、抖音矩阵系统可以解决哪些问题&#xff1f; 总结&#xff…

理解HTTP请求格式

HTTP概念 HTTP全称HyperTextTransfer Protocol(超文本传输协议)是一种用于分布式、协作式和超媒体信息系统的应用层协议&#xff1b;HTTP是一个客户端&#xff08;用户&#xff09;和服务端&#xff08;网站&#xff09;之间请求和响应的标准。 HTTP 协议是以 ASCII 码传输&…

Gobject tutorial 八

The GObject base class Object memory management Gobject的内存管理相关的API很复杂&#xff0c;但其目标是提供一个基于引用计数的灵活的内存管理模式。 下面我们来介绍一下&#xff0c;与管理引用计数相关的函数。 Reference Count 函数g_object_ref和g_object_unref的…

怎么将几段音频合并在一起,试试这几个音频拼接小妙招

怎么将多个音频合并在一起呢&#xff1f;音频是我们日常工作生活中常见的文件&#xff0c;音频与我们息息相关&#xff0c;无论你是音乐爱好者&#xff0c;还是喜欢记录生活中的声音&#xff0c;都离不开音频。因此我们会遇到关于很多音频剪辑的难题&#xff0c;就像今天小编给…

usb摄像头应用编程

作者简介&#xff1a; 一个平凡而乐于分享的小比特&#xff0c;中南民族大学通信工程专业研究生在读&#xff0c;研究方向无线联邦学习 擅长领域&#xff1a;驱动开发&#xff0c;嵌入式软件开发&#xff0c;BSP开发 作者主页&#xff1a;一个平凡而乐于分享的小比特的个人主页…

conda install xformers -c xformers/label/dev 的安装问题

在StableSR项目框架中&#xff0c;需要执行 conda install xformers -c xformers/label/dev 但是报错&#xff0c;错误显示&#xff0c;版本不匹配&#xff0c;如下所示&#xff1a; 我改用pip来安装&#xff0c;好像就不报错了&#xff1a; pip install xformers

javaWeb项目-ssm+vue企业台账管理平台功能介绍

本项目源码&#xff1a;javaweb项目ssm-vue企业台账管理平台源码-说明文档资源-CSDN文库 项目关键技术 开发工具&#xff1a;IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7 框架&#xff1a;ssm、Springboot 前端&#xff1a;Vue、ElementUI 关键技术&#xff1a;springboo…

vue项目——前端CryptoJS加密、解密

1、vue项目需要安装CryptoJS安装包 npm install crypto-js 2、在项目中引入CryptoJS import CryptoJS from crypto-js 3、使用&#xff0c;代码如下 // 此处key为16进制let key jiajiajiajiajiajiajiajia;console.log(密钥&#xff1a;, key);// key格式化处理key Crypt…

【前端开发工具】VS Code安装和使用

文章目录 一、前言二、下载三、安装四、配置五、使用5.1 导入项目5.2 本地运行项目5.3 修改界面文案&#xff0c;验证效果5.4 添加日志打印5.5 代码调试5.6 代码提交到Git仓库 六、总结 一、前言 本文介绍一下在前端vue项目中&#xff0c;VS Code的安装和配置。 什么是VS Code…

【干货分享】25地学考研推免夏令营汇总表

​ 25考研学子们&#xff0c;考研准备要赶早。 小编给大家整合准备了25地信考研夏令营时间信息表&#xff0c;需要的宝子收藏起来。 ​ 话不多说&#xff0c;需要的小伙伴直接评论区留言 25地信考研择校信息表&#xff1a;

IT入门知识第一部分《IT基础知识》(1/10)

目录 IT入门知识第一部分《IT基础知识》&#xff08;1/10&#xff09; 1.引言 2.第一部分&#xff1a;IT基础知识 2.1 计算机硬件 CPU&#xff1a;计算机的心脏 内存&#xff1a;数据的临时居所 存储设备&#xff1a;数据的长期仓库 输入输出设备&#xff1a;与计算机的…