小林图解系统-二.硬件结构 2.7为什么0.1+0.2不等于0.3?

为什么负数要用补码表示?

十进制转二进制:除2取余法

[整数类型]的数字在计算机的存储方式:int类型,32位,最高位[符号标志位],正数符号位0,负数的符号位1,剩余的31位则表示2进制数据。

负数,以补码表示,所谓的补码就是把正数的二进制全部取反再加1,-1的二进制就是把数字1的二进制取反后再加1。

如果负数不是使用补码的方式标识,则在做基本加减法运算的时候,需要多一步操作来判断是否为负数,如果为负数,还需要把加法反转成减法,或者把减法反转成加法,为了性能考虑要简化这个过程。

而用了补码的表示方式,对于负数的加减法操作,实际上是和正数加减法操作一样的。


十进制小数怎么转成二进制?

小数是怎么转二进制的,小数部分的转换不同于整数部分,采用的是乘2取整法,将十进制的小数部分乘以2作为二进制的一位,继续取小数部分乘以2作为下一位,直到不存在小数为止。

由于计算机的资源是有限的,所以没办法用二进制精确的表示0.1,只能用[近似值]来表示,就是在有限的精度情况下,最大化接近0.1的二进制数,于是就会造成精度缺失的情况。

对于二进制小数转十进制时,小数点后面的指数幂是负数。


计算机是怎么存小数的?

1000.101是[定点数]形式,小数点是定死的

计算机存储小数的采用的是浮点数,名字里的[浮点]表示小数点是可以浮动的。

比如1000.101二进制数,表示成1.000101*2^3,类似于数学上的科学记数法。

000101:尾数,即小数点后面的数字

3:指数,指定了小数点在数据中的位置

符号位:0表示正数,1为负数

指数位:指定了小数点在数据中的位置,指数可以是负数,也可以是正数,指数位的长度越长则数值的表示范围就越大

尾数位:小数点右侧的数字,也就是小数部分,尾数的长度决定了这个数的精度。

32位浮点数,单精度浮点数,float变量

64位浮点数,双精度浮点数,double变量

double尾数部分52位,float尾数部分23位,同事都带有一个固定隐含位,所以double有53个二进制有效位,float有24个二进制有效位,所以精度在十进制分别是log10(2^53)约等于15.95和log10(2^24)约等于7.22位,double有效数字式15~16位,float是7-8位,有效位包含整数和小数。

double的指数部分是11位,float的指数位是8位。

偏移量:为了减少不必要的麻烦,在实际存储指数的时候,需要把指数转换成无符号整数。

float的指数部分是8位,IEEE的标准规定单精度浮点的指数取值范围是-126~+127,于是为了把指数转换成无符号整数,就要加个偏移量,比如float的指数偏移量是127。


0.1+0.2==0.3吗?

不是所有的小数都可以用[完整]的二进制来表示的,比如十进制0.1在转换成二进制小数的时候,是一串无限循环的二进制数,计算机是无法表达无限循环的二进制数的。用近似值表示。

现在基本用IEEE 754规范的[单精度浮点类型]或[双精度浮点类型]来存储小数,根据精度的不同,近似值也会不同。

所以不等于0.3,因为有的小数无法用完整的二进制来表示,只能采用近似数的方式来保存。


总结

为什么负数要用补码表示?

负数之所以用补码的方式来表示,主要是为了统一和正数的加减法操作一样,毕竟数字的加减法是很常用的一个操作,就不要搞特殊化,尽量以统一的方式来运算。

十进制小数怎么转成二进制?

十进制整数转二进制使用的是「除 2 取余法」,十进制小数使用的是「乘 2 取整法」。

计算机是怎么存小数的?

计算机是以浮点数的形式存储小数的,大多数计算机都是 IEEE 754 标准定义的浮点数格式,包含三个部分:

  • 符号位:表示数字是正数还是负数,为 0 表示正数,为 1 表示负数;
  • 指数位:指定了小数点在数据中的位置,指数可以是负数,也可以是正数,指数位的长度越长则数值的表达范围就越大;
  • 尾数位:小数点右侧的数字,也就是小数部分,比如二进制 1.0011 x 2^(-2),尾数部分就是 0011,而且尾数的长度决定了这个数的精度,因此如果要表示精度更高的小数,则就要提高尾数位的长度;

用 32 位来表示的浮点数,则称为单精度浮点数,也就是我们编程语言中的 float 变量,而用 64 位来表示的浮点数,称为双精度浮点数,也就是 double 变量。

0.1 + 0.2 == 0.3 吗?

不是的,0.1 和 0.2 这两个数字用二进制表达会是一个一直循环的二进制数,比如 0.1 的二进制表示为 0.0 0011 0011 0011… (0011 无限循环),对于计算机而言,0.1 无法精确表达,这是浮点数计算造成精度损失的根源。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/30690.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络 —— 应用层(电子邮件)

计算机网络 —— 应用层(电子邮件) 电子邮件发送电子邮件的过程SMTP特性工作流程 电子邮件格式MIME关键组件工作方式 POP/IMAPPOP(邮局协议)IMAP(因特网邮件访问协议) 基于万维网的电子邮箱特点优势常见的基…

gorm 一对多

type Author struct {AID int gorm:"primary_key;AUTO_INCREMENT"Name stringAge stringSex string//关联关系Article []Article gorm:"ForeignKey:Auid;AssociationForeignKey:AID" } type Article struct {ArId int gorm:"primary_key;AUTO_I…

TF-IDF在现代搜索引擎优化策略中的作用

TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于文本挖掘和信息检索的统计方法,用来评估一个词语对于一个文档或一个语料库的重要程度。TF-IDF算法结合了词频(TF)和逆文档频率(IDF&#xff0…

软考高级资格是否等于高级工程师或者是否拥有职称?

软考采用"考试取代评审"的方式,一旦通过考试,就不再需要进行相应的职称认定和评审工作。取得考试通过证书意味着具备了相应工作岗位的水平和职称资格。软考的初级、中级、高级分别对应着技术员/助理工程师、工程师和高级工程师这些职称。 大多…

osi七层参考模型和tcp/ip模型的区别与相似之处

osi七层参考模型: 2.tcp/ip四层参考模型: osi七层参考模型与tcp/ip四层参考模型的相似与区别: 相同点: 2者都是模型化层次化 下层对上层提供服务支持 每层协议彼此相互独立 不同点:OSI先有模型才有协议 TCP/IP先有…

MK米客方德 SD NAND 功耗对比

在这个数据驱动的时代,MK米客方德在工业存储领域不断突破,凭借卓越的产品和服务赢得了广泛的客户认可。我们自主研发的嵌入式存储芯片已实现规模化量产,而我们最新一代的工业级SD NAND—AST系列也已正式推出。 该产品采用LGA-8(6*8mm)封装&am…

为什么选择飞速(FS)25G SFP28光模块?

25G SFP28光模块是一种传输速率为25Gbps的光模块。与传统的10G光模块相比,它具有更高的端口密度,可以通过减少TOR交换机和线缆的数量来节省运营成本。同时,25G光模块为中小型数据中心提供更节能高效的选择,非常适合连接中小型数据…

.NET C# 使用GDAL读取FileGDB要素类

.NET C# 使用GDAL读取FileGDB要素类 目录 .NET C# 使用GDAL读取FileGDB要素类1 环境2 Nuget3 Code 1 环境 VisualStudio2022 .NET6 GDAL 3.7.5 2 Nuget 3 Code using OSGeo.OGR; using OSGeo.OSR;namespace TestGDAL {internal class Program{static void Main(string[] a…

浅谈配置元件之Java默认请求

浅谈配置元件之Java默认请求 1.简介 “Java默认请求”(虽然直接名为"Java Request"更常见)是一个高级配置元件,它允许用户通过Java代码自定义请求逻辑,为测试提供了极高的灵活性和扩展性。 2.Java请求组件概述 在JM…

Ubuntu/Linux系统安装JDK1.8(带jdk1.8资源和操作教程)

文章目录 前言一、JDK1.8下载二、上传三、安装四、配置环境变量五、查看总结 前言 !!!!!!!!!!!!Ubuntu/Linux jdk1.8安装包&#xff…

【机器学习】【深度学习】MXnet神经网络图像风格迁移学习简介

使用部分 一、编程环境 编程环境使用Windows11上的Anaconda环境,Python版本为3.6. 关于Conda环境的建立和管理,可以参考我的博客:【Anaconda】【Windows编程技术】【Python】Anaconda的常用命令及实操 二、项目结构(代码非原创…

Hive期末总结

hive的概念,谁开发的 Apache Hive 是一个Apache 软件基金会维护的开源项目 Facebook贡献 hive是一个基于hadoop的数据仓库工具(对数据汇总查询和分析的工具) hive执行原理 Hive通过给用户提供的一系列交互接口,接收到用户的指令…

关于面试被面试官暴怼:“几年研究生白读” 的前因后果

中午一个网友来信说自己和面试官干起来了,看完他的描述真是苦笑不得,这年头是怎么了,最近互联网CS消息满天飞,怎么连面试官都SB起来了呢? 大概是这样的:这位网友面试时被问及了Serializable接口的底层实现原理,因为这是一个标识性的空接口,大部分同学在学习时都秉持着会…

【Mybatis-plus】查询及更新为null或空字符串

前言 查询为 null 或者 空字符串时&#xff0c;可以使用 or() 关键字。 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 查询 使用 LambdaQueryWrapper 查询 parentCode 为 null 或者 空字符串 的数据。 LambdaQueryWrapper<CompanyEntity> qu…

使用Vue+Antv-X6实现一个输送线可视化编辑器(支持拖拽、自定义连线、自定义节点等)

最近公司有这样的业务&#xff0c;要实现一个类似流程图的编辑器&#xff0c;可以拖拉拽之类的&#xff0c;网上寻找了一番&#xff0c;最终决定使用Antv-X6这个图形引擎&#xff0c;非常强大&#xff0c;文档多看几遍也就能上手使用了。感觉还不错就写个使用心得期望能帮助到同…

React 通信:深层传递(Props、Context、Children Jsx)

在之前的文章 探讨&#xff1a;围绕 props 阐述 React 通信 中总结了关于“父子”组件传值&#xff0c;但是当需要在组件树中深层传递参数以及需要在组件间复用相同的参数时&#xff0c;传递 props 就会变得很麻烦。 实际案例&#xff1a; 下述展示有两种状态&#xff1a;① 详…

数据治理的七大核心技术 全面了解数据治理必读篇

在当今的数字化时代&#xff0c;数据已成为企业最宝贵的资产之一&#xff0c;其价值不仅体现在数据量的巨大&#xff0c;更在于数据的深度和宽度。随着大数据、云计算、物联网&#xff08;IoT&#xff09;和人工智能&#xff08;AI&#xff09;等技术的不断进步&#xff0c;企业…

Jenkins 发测试邮件报错 553 Mail from must equal authorized user

Jenkins 发测试邮件报错 553 Mail from must equal authorized user 报错信息报错原因解决办法 报错信息 org.eclipse.angus.mail.smtp.SMTPSenderFailedException: 553 Mail from must equal authorized user at org.eclipse.angus.mail.smtp.SMTPTransport.mailFrom(SMTPTra…

微信小程序端在线客服源码系统 聊天记录实时保存 带完整的安装代码包以及搭建教程

系统概述 在当今数字化时代&#xff0c;客户服务的质量和效率成为企业竞争的关键因素之一。微信小程序作为一种便捷的应用形式&#xff0c;为在线客服提供了广阔的平台。而具备聊天记录实时保存功能的微信小程序端在线客服源码系统&#xff0c;则能够更好地满足企业与客户之间…

【人机交互 复习】第8章 交互设计模型与理论

一、引文 1.模型&#xff1a; 有的人成功了&#xff0c;他把这一路的经验中可以供其他人参考的部分总结了出来&#xff0c;然后让别人套用。 2.本章模型 &#xff08;1&#xff09;计算用户完成任务的时间&#xff1a;KLM &#xff08;2&#xff09;描述交互过程中系统状态的变…