分类预测 | Matlab实现CNN-BiLSTM-SAM-Attention卷积双向长短期记忆神经网络融合空间注意力机制的数据分类预测

分类预测 | Matlab实现CNN-BiLSTM-SAM-Attention卷积双向长短期记忆神经网络融合空间注意力机制的数据分类预测

目录

    • 分类预测 | Matlab实现CNN-BiLSTM-SAM-Attention卷积双向长短期记忆神经网络融合空间注意力机制的数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现CNN-BiLSTM-SAM-Attention卷积双向长短期记忆神经网络融合空间注意力机制的数据分类预测(完整源码和数据)
2.自带数据,多输入,单输出,多分类。图很多,包括多边形面积PAM、分类准确率、灵敏度、特异性、曲线下面积AUC、Kappa系数、F_measure。等等。
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2021及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据资源处下载:Matlab实现CNN-BiLSTM-SAM-Attention卷积双向长短期记忆神经网络融合空间注意力机制的数据分类预测。
%% 建立模型
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层lstmLayer(best_hd, "Name", "lstm", "OutputMode","last")              % BiLSTM层fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/2938.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入探究音视频开源库WebRTC中NetEQ音频抗网络延时与抗丢包的实现机制

目录 1、引言 2、WebRTC简介 3、什么是NetEQ? 4、NetEQ技术详解 4.1、NetEQ概述 4.2、抖动消除技术 4.3、丢包补偿技术 4.4、NetEQ概要设计 4.5、NetEQ的命令机制 4.6、NetEQ的播放机制 4.7、MCU的控制机制 4.8、DSP的算法处理 4.9、DSP算法的模拟测试…

分布式与一致性协议之CAP(二)

CAP CAP不可能三角 CAP不可能三角是指对于一个分布式系统而言,一致性、可用性、分区容错性指标不可兼得,只能从中选择两个, 如图所示。CAP不可能三角最初是埃里克布鲁尔(Eric Brewer)基于自己的工程实践提出的一个猜想,后被塞斯吉…

论文辅助笔记:LLM-MOB代码解读

论文笔记 Where Would I Go Next? Large Language Models as Human Mobility Predictor-CSDN博客 1 主函数 1.1 导入库 import os import pickle import time import ast import logging from datetime import datetime import pandas as pd from openai import OpenAIclie…

【003_音频开发_基础篇_Linux进程通信(20种你了解几种?)】

003_音频开发_基础篇_Linux进程通信(20种你了解几种?) 文章目录 003_音频开发_基础篇_Linux进程通信(20种你了解几种?)创作背景Linux 进程通信类型fork() 函数fork() 输出 2 次fork() 输出 8 次fork() 返回值fork() 创建子进程 方…

Diffusion Model原理剖析

目录 前言1. DDPM演算法初览2. 图像生成模型共同目标3. VAE: Lower bound of l o g P ( x ) logP(x) logP(x)4. Diffusion Model背后的数学原理5. 为什么需要Sample?6. Diffusion Model的应用7. Diffusion Model成功的关键总结参考 前言 接着上篇文章 图像生成模型浅析&#…

Three.js入门学习笔记

学习资料: 【Three.js】Three.js快速上手教程_three.module.js-CSDN博客 2024年了,是该学学Three.js了_three.js 2024-CSDN博客 一、three.js简介 three.js是JavaScript编写的WebGL第三方库。 three.js,webGL,openGL三者的关…

【Linux高性能服务器编程】两种高性能并发模式剖析——领导者/追随者模式

hello !大家好呀! 欢迎大家来到我的Linux高性能服务器编程系列之两种高性能并发模式介绍,在这篇文章中,你将会学习到高效的创建自己的高性能服务器,并且我会给出源码进行剖析,以及手绘UML图来帮助大家来理解…

SpringBoot自动配置底层源码分析

文章目录 1. 什么是SpringBoot的自动装配?2. SpringBoot自动装配的底层原理 1. 什么是SpringBoot的自动装配? Spring Boot的自动配置是一种机制,它使得开发者能够快速地开始构建Spring应用,而不需要手动编写大量的样板代码。Spri…

FRPC+PHP+MYSQL+APACHE2=个人网站

应用背景有公网需求,但是又不想去买又贵又低配置的服务器,然后方案就应运而生 frp/README_zh.md at dev fatedier/frp (github.com) 在这里, FRPC作为内网穿透服务, PHPMYSQLAPACHE2,作为网站搭建,具体细节不细讲, 但是在我的/var/www/html下面 linaroHinlink:/var/www/h…

CSS3新增特性(二)

四、2D 转换 • 属性名:transform (可用于制作2D转换,也可用于制作3D转转换;2D转换是平面上的转换,3D转换是在三维立体空间的转换) • 作用:对元素进行水平或垂直方向的移动、缩放、旋转、拉长…

二. 搭建Nginx 直播流程服务器

目录 1. 前言 2. 安装 Nginx 依赖 3.下载源码 4. 编译安装 5.配置 rtmp 服务 6.验证配置 1. 前言 服务器由 NGINX+RTMP 构成。 NGINX 是 HTTP 服务器, RTMP 是附加模块。 其中 NGINX 我选择的是用 源码编译方式 进行安装,因为这种方式可以自定义安装指定的…

DevOps(八)Jenkins的Maven和Git插件

一、Maven简介 Maven是一个构建生命周期管理和理解工具,用于Java项目。它提供了标准化的构建流程,并简化了从项目编译到文档生成等各种构建方面的管理。 Maven是由Apache软件基金会开发和维护的一个流行的项目管理工具。它的设计目的是简化Java项目的构…

Linux驱动开发:深入理解I2C时序

目录标题 I2C简介I2C时序关键点Linux内核中的I2C时序处理I2C适配器I2C算法I2C核心 代码示例:I2C设备访问调试I2C时序问题 在Linux驱动开发中,理解和正确处理I2C时序对于确保I2C设备正常工作至关重要。本文将详细介绍I2C通信协议的时序特征,并…

应用在防蓝光显示器中的LED防蓝光灯珠

相比抗蓝光眼镜、防蓝光覆膜、软体降低蓝光强度这些“软”净蓝手段,通过对LED的发光磷粉进行LED背光进行技术革新,可实现硬件“净蓝”。其能够将90%以上的有害蓝光转换为450nm以上的长波低能光线,从硬件的角度解决了蓝光危害眼睛的问题&#…

❤️新版Linux零基础快速入门到精通——第一部分❤️

❤️新版Linux零基础快速入门到精通——第一部分❤️ 非科班的我!Ta!还是来了~~~1. 来认识一下Linux吧!1.1 操作系统概述1.1.1 操作系统概述1.1.2 操作系统的发展史1.1.2.1 Unix1.1.2.2 Minix1.1.2.3 Linux 1.1.3 操作系统的发展 1.2 Linux初识1.2.1 Lin…

【MySQL】数据库操作指南:数据类型篇

🌱博客主页:青竹雾色间 🌱系列专栏:MySQL探险日记 😘博客制作不易欢迎各位👍点赞⭐收藏➕关注 ✨人生如寄,多忧何为 ✨ 文章目录 1. 数值类型1.1 tinyint 类型1.2 bit 类型1.3 小数类型1.3.1 f…

nacos配置mysql(windows)

nacos默认是使用的内置数据库derby ,可通过配置修改成mysql,修改成mysql之后,之前配置在derby的数据会丢失 本文使用mysql版本为8.0.22 nacos版本为2.3.1 在mysql里面先创建一个数据库test(名称自定义,和后面配置文件里面的一样就好了) 在上面创建的数据…

Milvus 在哈啰的应用与落地

向量数据库还有哪些可能性? 本期的【User Tech】直播告诉你答案!明晚的直播,我们邀请了来自哈啰的资深研发工程师王永辉,他将为我们详细讲解 Milvus 在本地出行及生活服务平台的应用及未来发展的诸多可能性,敬请期待&a…

如何在Windows服务做性能测试(CPU、磁盘、内存)

目录 前言1. 基本知识2. 参数说明 前言 由于需要做一些接口测试,测试是否有真的优化 1. 基本知识 该基本知识主要用来用到Performance Monitor,以下着重介绍下这方面的知识 性能监视器(Performance Monitor):Windo…

C++ 核心编程 - 内存分区模型

文章目录 1.1 程序运行前1.2 程序运行后1.3 new 操作符 C 程序在执行时,将内存大致划分为 4个区域: 代码区:存放函数体的二进制代码,由操作系统进行管理;全局区:存放全局变量和静态变量以及常量&#xff1…