Matlab基础篇:数据输入输出

前言

数据输入和输出是 Matlab 数据分析和处理的核心部分。良好的数据输入输出能够提高工作效率,并确保数据处理的准确性。本文将详细介绍 Matlab 数据输入输出的各种方法,包括导入和导出数据、数据处理和数据可视化。

一、导入数据

Matlab 提供了多种方法导入外部数据文件,包括文本文件、Excel 表格、数据库等。以下是几种常用的导入数据方法。

  1. 导入文本文件
    • 使用 load 函数导入简单的文本文件:

    data = load('data.txt');  % 导入 txt 文件

  • 使用 fscanf 和 fgets 函数读取特定格式的文本文件:

    fid = fopen('data.txt', 'r');  % 打开文件data = fscanf(fid, '%f');      % 逐行读取数据fclose(fid);                   % 关闭文件

  1. 导入 CSV 文件
    • 使用 csvread 函数导入 CSV 文件:

    csv_data = csvread('data.csv');  % 读取 CSV 文件

  • 使用 readtable 函数导入 CSV 文件,并将数据存储在一个表中,便于后续处理:

    table_data = readtable('data.csv');  % 读取 CSV 文件到表

  1. 导入 Excel 文件
    • 使用 xlsread 函数导入 Excel 文件:

    [num, txt, raw] = xlsread('data.xlsx');  % 读取 Excel 文件

  • 使用 readmatrix 和 readcell 函数导入 Excel 文件:

    matrix_data = readmatrix('data.xlsx');  % 读取 Excel 文件中的数值数据cell_data = readcell('data.xlsx');  % 读取 Excel 文件中的所有数据

  1. 从数据库导入数据
    • 通过 database 函数连接到数据库,并使用 SQL 查询语句进行数据导入:

    conn = database('database_name', 'username', 'password');  % 连接到数据库curs = exec(conn, 'SELECT * FROM table_name');  % 执行 SQL 查询curs = fetch(curs);  % 获取查询结果db_data = curs.Data;  % 保存数据close(conn);  % 关闭数据库连接

以下是几种常用的导入数据方法总结:

导入方法函数示例说明
文本文件loaddata = load('data.txt');适用于简单数字文本文件
文本文件fscanffgetsfscanf(fid, '%f');适用于特定格式的文本文件
CSV 文件csvreadcsv_data = csvread('data.csv');导入 CSV 文件
CSV 文件readtabletable_data = readtable('data.csv');导入 CSV 文件到表
Excel 文件xlsread[num, txt, raw] = xlsread('data.xlsx');导入 Excel 文件
Excel 文件readmatrixreadcellmatrix_data = readmatrix('data.xlsx');导入 Excel 文件中的数据
数据库databaseexecfetchconn = database(...); curs = exec(...);从数据库导入数据

二、导出数据

在数据处理和分析完毕之后,常常需要将结果导出到文件中保存或与他人共享。Matlab 提供了多种导出数据的方法。

  1. 导出到文本文件
    • 使用 save 函数导出变量到 .mat 文件(Matlab 专用格式):

    save('result.mat', 'data');  % 将变量 data 保存到 result.mat 文件

  • 使用 fprintf 函数导出数据到文本文件:

    fid = fopen('result.txt', 'w');  % 打开文件fprintf(fid, '%.2f\n', data);    % 将数据写入文件fclose(fid);                     % 关闭文件

  1. 导出到 CSV 文件
    • 使用 csvwrite 函数将数据导出到 CSV 文件:

    csvwrite('result.csv', data);  % 将数据保存到 CSV 文件

  • 使用 writetable 函数将表格导出到 CSV 文件:

    writetable(table_data, 'result.csv');  % 将表格数据保存到 CSV 文件

  1. 导出到 Excel 文件
    • 使用 xlswrite 函数将数据导出到 Excel 文件:

    xlswrite('result.xlsx', data);  % 将数据保存到 Excel 文件

  • 使用 writematrix 和 writecell 函数将数据导出到 Excel 文件:

    writematrix(matrix_data, 'result.xlsx');  % 将矩阵数据保存到 Excel 文件writecell(cell_data, 'result.xlsx');  % 将元胞数据保存到 Excel 文件

以下是几种常用的导出数据方法总结:

导出方法函数示例说明
文本文件savesave('result.mat', 'data');保存到 Matlab 专用格式
文本文件fprintffprintf(fid, '%.2f\n', data);导出到文本文件
CSV 文件csvwritecsvwrite('result.csv', data);保存到 CSV 文件
CSV 文件writetablewritetable(table_data, 'result.csv');将表格保存到 CSV 文件
Excel 文件xlswritexlswrite('result.xlsx', data);保存到 Excel 文件
Excel 文件writematrixwritecellwritematrix(data, 'result.xlsx');将矩阵或元胞保存到 Excel 文件

三、数据处理

在数据导入之后,我们常常需要对数据进行一些处理,如排序、筛选、统计和清理。

  1. 数据排序
    • 使用 sort 函数对数组或矩阵进行排序:

    sorted_data = sort(data);  % 对数组进行排序sorted_matrix = sortrows(matrix_data);  % 对矩阵的行进行排序

  1. 数据筛选
    • 使用逻辑索引对数据进行筛选:

    filtered_data = data(data > 10);  % 筛选出大于 10 的数据

  1. 数据统计
    • 使用 Matlab 提供的统计函数对数据进行统计分析:

    mean_data = mean(data);      % 计算平均值std_data = std(data);        % 计算标准差median_data = median(data);  % 计算中位数

  1. 数据清理
    • 使用 isnan 和 fillmissing 函数对缺失数据进行标记和处理:

    data_with_nan = [1, 2, NaN, 4];idx_nan = isnan(data_with_nan);  % 标记缺失数据data_filled = fillmissing(data_with_nan, 'linear');  % 使用线性插值填补缺失数据

以下是常见数据处理方法的总结:

数据处理方法函数示例说明
数据排序sortsortrowssorted_data = sort(data);对数组或矩阵进行排序
数据筛选逻辑索引filtered_data = data(data > 10);筛选出特定条件的数据
数据统计meanstdmedianmean_data = mean(data);计算平均值、中位数、标准差
数据清理isnanfillmissingdata_filled = fillmissing(data_with_nan, 'linear');处理缺失数据

四、数据可视化

数据处理完毕之后,我们可以通过数据可视化来更直观地展示数据。Matlab 提供了丰富的数据可视化工具,能够绘制各种类型的图形,用于数据分析和展示。

  1. 绘制基本图形
    • 二维线图:使用 plot 函数绘制基本的二维线图。

        x = 0:0.1:10;y = sin(x);plot(x, y);  % 绘制二维线图title('Sine Wave');xlabel('x');ylabel('sin(x)');grid on;  % 打开网格

  • 散点图:使用 scatter 函数绘制二维散点图。

        x = randn(100, 1);y = randn(100, 1);scatter(x, y, 'filled');title('Scatter Plot');xlabel('x');ylabel('y');grid on;

  • 柱状图:使用 bar 函数绘制柱状图。

        categories = {'A', 'B', 'C', 'D', 'E'};values = [10, 20, 30, 25, 15];bar(categorical(categories), values);title('Bar Graph');xlabel('Category');ylabel('Values');

  1. 绘制高级图形
    • 箱线图:使用 boxplot 函数绘制箱线图,用于显示数据分布和异常值。

        data = randn(100, 5);boxplot(data);title('Box Plot');xlabel('Category');ylabel('Values');

  • 热图:使用 heatmap 函数绘制热图,主要用于展示矩阵数据的大小和分布。

        data = rand(10, 10);heatmap(data);title('Heatmap');

  • 三维表面图:使用 surf 函数绘制三维表面图。

        [X, Y] = meshgrid(-3:0.1:3, -3:0.1:3);Z = sin(sqrt(X.^2 + Y.^2));surf(X, Y, Z);title('Surface Plot');xlabel('X');ylabel('Y');zlabel('Z');grid on;

下表总结了一些常用的绘图函数及其示例:

图形类型函数示例说明
二维线图plotplot(x, y);绘制二维线图
散点图scatterscatter(x, y, 'filled');绘制二维散点图
柱状图barbar(categorical(cat), values);绘制柱状图
箱线图boxplotboxplot(data);绘制箱线图
热图heatmapheatmap(data);绘制热图
三维表面图surfsurf(X, Y, Z);绘制三维表面图

  1. 数据绘图示例
    下面通过一个综合示例,展示如何进行数据读取、处理、绘图的全过程。

示例:从 CSV 文件中导入数据,进行简单的数据处理,并绘制几种图形展示结果。

假设有一个 CSV 文件 data.csv,内容如下:

ID,Value1,Value2
1,10,100
2,15,110
3,20,105
4,25,95
5,30,120

  1. 导入数据

    % 导入数据到表格data = readtable('data.csv');

  1. 数据处理

    % 计算 Value1 和 Value2 的平均值mean_val1 = mean(data.Value1);mean_val2 = mean(data.Value2);% 筛选出 Value1 大于 20 的数据filtered_data = data(data.Value1 > 20, :);

  1. 数据可视化

    % 绘制折线图figure;subplot(2, 2, 1);plot(data.ID, data.Value1, '-o', 'DisplayName', 'Value1');hold on;plot(data.ID, data.Value2, '-s', 'DisplayName', 'Value2');title('Line Plot of Values');xlabel('ID');ylabel('Values');legend('show');grid on;% 绘制散点图subplot(2, 2, 2);scatter(data.Value1, data.Value2, 'filled');title('Scatter Plot of Value1 vs Value2');xlabel('Value1');ylabel('Value2');grid on;% 绘制柱状图subplot(2, 2, 3);bar(categorical(data.ID), [data.Value1, data.Value2]);title('Bar Graph of Values');xlabel('ID');ylabel('Values');legend({'Value1', 'Value2'});grid on;% 绘制箱线图subplot(2, 2, 4);boxplot([data.Value1, data.Value2], {'Value1', 'Value2'});title('Box Plot of Values');ylabel('Values');

通过此综合示例,我们从 CSV 文件中导入数据,进行了简单的数据处理,并绘制了折线图、散点图、柱状图和箱线图,用于展示和分析数据。

五、总结

本文详细介绍了 Matlab 的数据输入输出功能,包括如何导入和导出文本文件、CSV 文件、Excel 文件以及数据库中的数据。同时,通过数据处理方法,如数据排序、筛选、统计和清理,对导入的数据进行了处理。最后,介绍了数据可视化工具,通过各种图形展示数据处理结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/29267.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络:1概述、2物理层

目录 概述因特网网络、互连网(互联网)与因特网的区别与关系因特网发展的三个阶段因特网服务提供者(Internet Service Provider,ISP)因特网的标准化工作因特网的管理结构 三种交换电路交换分组交换报文交换 计算机网络性…

Threejs-09、贴图的加载与环境遮蔽强度设置

1、创建文理加载器 let textureLoader new THREE.TextureLoader();2、加载贴图 // 加载文理 let texture textureLoader.load("./img/image.png") // 加载ao贴图 let aoMap textureLoader.load("./img/image.png");3、创建一个平面 let planeGeomet…

常见日志库NLog、log4net、Serilog和Microsoft.Extensions.Logging介绍和区别

在C#中,日志库的选择主要取决于项目的具体需求,包括性能、易用性、可扩展性等因素。以下是关于NLog、log4net、Serilog和Microsoft.Extensions.Logging的基本介绍和使用示例。 包含如何配置输出日志到当前目录下的log.txt文件及控制台的示例,…

springboot整合sentinel接口熔断

背景 请求第三方接口或者慢接口需要增加熔断处理,避免因为慢接口qps过大导致应用大量工作线程陷入阻塞以至于其他正常接口都不可用,最近项目测试环境就因为一个查询的慢接口调用次数过多,导致前端整个首页都无法加载。 依赖下载 springboo…

网络安全(完整)

WAPI鉴别及密钥管理的方式有两种,既基于证书和基于预共享密钥PSK。若采用基于证书的方式,整个国产包括证书鉴别、单播密钥协商与组播密钥通告;若采用预共享密钥方式,整个国产则为单播密钥协商与组播密钥通告蠕虫利用信息系统缺陷&…

React+TS前台项目实战(十)-- 全局常用组件CopyText封装

文章目录 前言CopyText组件1. 功能分析2. 代码详细注释3. 使用方式4. 效果展示 总结 前言 今天这篇主要讲项目常用复制文本组件封装,这个组件是一个用于拷贝文本的 React 组件,它提供了拷贝,国际化和消息提示的功能 CopyText组件 1. 功能分…

每日一题——Python实现PAT甲级1144 The Missing Number(举一反三+思想解读+逐步优化)四千字好文

一个认为一切根源都是“自己不够强”的INTJ 个人主页:用哲学编程-CSDN博客专栏:每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 我的写法 时间复杂度分析 空间复杂度分析 总体空间复杂度:O(N) 总结 我…

端口映射工具下载?

天联是一款强大的端口映射工具,它能够帮助用户实现远程数据采集管理、异地统一管理、随时随地协同办公等多种场景的应用。无论您是医药、餐饮、商超等零售行业的企业,还是需要使用OA、CRM、ERP、财务进销存等系统的企业,甚至是使用视频监控设…

适用于世界上最先进的医疗应用的高压电阻器

我们的电阻器专为用于医疗诊断、治疗和预防的各种产品而设计。从小型植入式和非侵入性设备到大型诊断成像设备,医疗制造商之所以选择 EAK电阻器,是因为操作环境是高电压和磁场,准确性和稳定性至关重要。 EAK 专有的精密打印技术生产出非常适…

如何应对 CentOS 的停更?

文章目录 如何应对 CentOS 的停更?Linux发行版CentOS停更后,我们可选的替代品RHEL LinuxRocky Linux公有云 LinuxDebian 系 Linux 如何应对 CentOS 的停更? Linux发行版 Linux内核是开源的,任何人都可以获取源代码,进…

嵌入式开发实验项目【基于Arduino的智能循迹小车】步进电机版本(含完整可执行详细代码)| 另附:测试行进传感器可用性,测试小车轱辘/轮胎是否可用

“真正的光明决不是永没有黑暗的时间,只是永不被黑暗所掩蔽罢了。真正的英雄决不是永没有卑下的情操,只是永不被卑下的情操所屈服罢了。” 🎯作者主页: 追光者♂🔥 🌸个人简介: 💖[1] 计算机专业硕士研究生💖 🌿[2] 2023年城市之星领跑者TOP1(哈尔…

Hi3861 OpenHarmony嵌入式应用入门--启动流程

目录 BootLoader的启动与运行 Hi3861 RiSC-V boot 启动文件介绍 Loaderboot 启动过程 Flashboot代码介绍 printf串口配置 内核启动任务 BootLoader的启动与运行 Hi3861 RiSC-V boot 启动文件介绍 - Hi3861 的引导程序分为两部分,一部分是在芯片出厂时已经固…

Redis-数据结构-跳表详解

Redis概述 Redis-数据结构-跳表详解 跳表(Skip List)是一种基于并联的链表结构,用于在有序元素序列中快速查找元素的数据结构。 Redis 中广泛使用跳表来实现有序集合(Sorted Set)这一数据结构。 1.跳表的基本概念和…

【源码】Spring事务之事务失效及原理

Spring事务 1、【源码】SpringBoot事务注册原理 2、【源码】Spring Data JPA原理解析之事务注册原理 3、【源码】Spring Data JPA原理解析之事务执行原理 4、【源码】SpringBoot编程式事务使用及执行原理 5、【源码】Spring事务之传播特性的详解 6、【源码】Spring事务之…

搜索与人工智能相结合如何解决企业数据问题?

作者:来自 Elastic Fermi Fang 企业数据是好处还是负担? 组织正被数据淹没 —— 从安全事件日志和应用程序错误消息到物联网指标和帮助中心常见问题解答。这些丰富的信息通常存在于孤立的孤岛中,在整合这些信息以提升客户体验、提高运营弹性…

thinkphp5使用模型删除与复杂查询EXP

模型删除 应用软删除 表中需要有字段,deletetime 模型中使用下面方法 use SoftDelete;protected $deleteTime delete_time;真实删除 // 软删除 User::destroy(1); // 真实删除 User::destroy(1,true); $user User::get(1); // 软删除 $user->delete(); // 真…

js 实现将后端请求来的 Blob 数据保存到用户选择的任意目录

js实现将后端请求来的 Blob 数据保存到用户选择的任意目录 实现方式 实现方式 实现方式是使用 window 的 showSaveFilePicker 方法。Window 接口的 showSaveFilePicker() 方法用于显示一个文件选择器,以允许用户保存一个文件。可以选择一个已有文件覆盖保存&#xf…

基于Java+Swing贪吃蛇小游戏(含课程报告)

博主介绍: 大家好,本人精通Java、Python、C#、C、C编程语言,同时也熟练掌握微信小程序、Php和Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…

兼容MacOS和FreeBSD软件包的开源ravynOS操作系统

ravynOS 是一个新型的操作系统项目,致力于在 x86-64(终极目标是同时实现 ARM)平台上提供与 macOS 类似的体验和兼容性。它基于坚若磐石的 FreeBSD、现有的开源代码和锦上添花的新代码构建。 主要设计目标: 与 macOS 应用程序的源…

语音质量评价方法之MOS

引言 在语音增强、语音合成、语音转换、声音转换、语音克隆、语音修复等等领域,常常要对输出的语音进行评价。对语音的质量评价一般关注两个方面,即主观评价和客观评价。主观评价就是人凭借听觉感受对语音进行打分,客观评价比较广泛&#xf…