Transformer系列:图文详解Decoder解码器原理

从本节开始本系列将对Transformer的Decoder解码器进行深入分析。


内容摘要
  • Encoder-Decoder框架简介
  • shifted right移位训练
  • 解码器的并行训练和串行预测
  • 解码器自注意力层和掩码
  • 解码器交互注意力层和掩码
  • 解码器输出和损失函数

Encoder-Decoder框架简介

在原论文中Transformer用于解决机器翻译任务,机器翻译这种Seq2Seq问题通常以Encoder-Decoder框架来进行建模,Transformer的网络结构也是基于encoder-decoder框架设计的。这种框架的模型分为两部分编码器Encoder和解码器Decoder,编码器负责将原文本数据编码为中间状态向量,该状态向量传递给解码器生成输出。示意图如下

Encoder-Decoder框架

以机器翻译场景为例,期望将某种语言的句子X翻译成另一种语言的句子Y,句子被表征为每个位置的字符id输入,则给定X=(x1,x2,x3,x4…)输入给模型,期望模型预测出Y=(y1,y2,y3,y4…),模型架构如下

机器翻译场景的Encoder-Decoder

编码器会对完整的输入句子通过各种复杂非线性变换生成State,代表原始输入被编码器编码之后形成的中间语义状态,形如公式

编码器输出中间语义向量

而解码器层需要融合解码器产出的中间状态State,和解码器已经生成出的信息Y1,Y2…Yi-1,来生成i时刻需要生成的单词Yi。

解码器融合解码器语义和历史解码信息

解码器是从第一个单词开始,逐位预测下一个单词,最终实现了从X翻译到Y的任务。
在实际网络中会在解码器中增加注意力机制,否则对于任何位置Yi的预测中间状态state都是一样的,显然源文本中每个位置的字符应该和目标翻译文本各位置字符存在一定的对照关系,因此源文本的编码器state向量应该在每个位置对于当下要预测的Yi有不一样的权重分配,公式如下

带有注意力机制的Decoder

注意力机制工作的方式是将当下需要预测的单词位置的隐向量,和编码器输出的每个输入位置的状态向量,一一通过一个对齐函数(Attention)来计算目标单词和输入中某单词对齐的可能性大小,可能性越大赋予更大的权重,代表当下预测单词应该更加关注源文本中其对照单词的信息,最终中间状态向量state会给该对照单词位置处的分量给予更多的权重,从而更好地预测出该位置的目标单词。带有注意力机制的Encoder-Decoder示意图如下

带有注意力机制的Encoder-Decoder


shifted right移位训练

Transformer的解码器和一般的Encoder-Decoder结构类似,融合编码器的输出以及解码器当前位置之前已经预测出的输出,一齐预测出当前位置的预测结果,通过逐位依次预测完成Seq2Seq的任务。Transformer解码器结构如下

Transformer的解码器

右侧部分为Decoder解码器,将期望预测的目标文本添加start和end标识位置,底部将目标文本作为输入,顶部将目标文本**右移一格(shifted right)**作为预测输出,编码器的输出和输出是错位设计的,以编码器输入为“I love you”,解码器输出为“我爱你”为例,在训练过程中编码器的输入和预测目标分别为

错位训练

每次总是以前面已经出现的单词加上编码器的中间状态,来预测下一个单词,比如红色阴影部分使用"+我"来预测下一个单词“爱”,以此类推该条样本可以分为预测“我”,“爱”,“你”,“end”四个任务,Decoder的目标是输出“我”,“爱”,“你”,“end”四个位置的embedding,这四个任务的预测准确度作为整条样本的预测目标。
从输入输出的角度来看,""位置经过Decoder输出的向量embedding服务于“我”,"我"位置经过Decoder输出的向量embedding服务于“爱”,以此类推,当前词的Decoder结果用于预测它右边那个词的概率,这就是shifted right的体现,理解这点很重要。

理解shifted right错位训练


解码器的并行训练和串行预测

shifted right移位训练仅仅解决了预测目标的问题,移位训练实施起来比一般的分类任务要复杂,分为训练和预测两种场景。
在训练场景下答案数据集会提前给到,令一个批次数量为B,文本长度为L,输出embedding长度为D,我们只需要将前L-1的文本作为Decoder的输入,将后L-1的文本作为Decoder的预测目标即可,永远用前一个词的embedding来预测后一个词的概率分布,此时输入是[B,L-1,D],输出也是[B,L-1,D],再加上Transformer这种Self Attention天然地支持所有词并行输入训练,因此在训练场景可以将答案文本全局移位,然后全部一齐输入训练,考验模型在前词和更早之前的词确定的前提下,后面一个词的预测能力,将一个完成的句子拆成一个个单词的预测任务从而重复地训练模型能力。
在预测场景下不存在答案文本,只能从位置开始逐位预测,因此预测场景的解码器必定是串行的。将预测的单词和历史预测单词一齐作为解码器输入来预测下一个新单词,重复这个过程直到预测结果为截止,预测阶段输入文本是一个一个单独输入的,同时会配合在此之前的历史预测单词完成自注意力机制。

预测阶段解码器串行工作方式


解码器自注意力层和掩码

解码器主要包含两个注意力模块,分别是自注意力层和交互注意力层,自注意力层是对历史已经预测的单词序列做特征表征,交互注意力层是融合历史预测单词序列和编码器输出的特征表征。在自注意力层有两个要点,首先Q,K,V在训练和预测阶段怎么分配,另外是它独有的下三角掩码。

Q,K,V在训练和预测阶段的分配

解码器的自注意力机制和编码器中的网络结构一致,都是基于Self Attention,通过原始embedding加上位置编码来作为Decoder的输入,自注意力层包含Q,K,V注意力计算,残差链接,层归一化,前馈传播模块,mask机制等。
解码器的自注意力机制在训练阶段Q,K,V相同,都是带有mask掩码的答案文本embedding,而在预测阶段由于只需要用Decoder的最后一维(也就是最后一个token)embedding做概率分布,因此只需要将当前词的信息作为Q,将当前词和之前所有的词的信息作为K和V,对最后一个token位置单独做Self Attention即可,如果这点难以理解请回看上一段的shifted right训练方式。

下三角掩码

在编码器中仅需要对padding位置进行掩码,因为padding位置的信息不需要带有权重去干扰有实词位置的embedding表征,而在解码器模块不仅要考虑padding导致的mask,还要考虑后词偷看问题。由于答案是一齐输入的,而实际的部署场景是步进预测的,理论上当前步长是看不到当前步长之后的词的信息的,解决方案是使用下三角掩码,将答案中当前位置之后的单词全部mask为0,这样答案文本依旧可以一齐输入,在Keras的Transformer源码中实现如下

def GetSubMask(s):# TODO 生成一批下三角矩阵,就是斜对角线以下部分全是1len_s = tf.shape(s)[1]bs = tf.shape(s)[:1]mask = K.cumsum(tf.eye(len_s, batch_shape=bs), 1)return mask

令s为一个[batch_size,5,6]每个文本最大长度为5,每个单词映射维度为6,调用GetSubMask生成mask如下

>>> a = tf.reshape(tf.convert_to_tensor(list(range(30))), [1, 5, 6])
>>> GetSubMask(a)
>>> <tf.Tensor: shape=(1, 5, 5), dtype=float32, numpy=
array([[[1., 0., 0., 0., 0.],[1., 1., 0., 0., 0.],[1., 1., 1., 0., 0.],[1., 1., 1., 1., 0.],[1., 1., 1., 1., 1.]]], dtype=float32)>

该下三角掩码美一行代表当前位置,每一行的纵向只有当前位置和之前位置为1代表自注意力使用该词,否则为0代表该词还看不到不能使用,以句子序列ABCD为例图示如下

下三角掩码

例如在计算C单词的自注意力表征的时候,只能使用候选的ABC三个词的V信息,C和D的注意力权重必须干预改成0。

掩码中1代表计算出的Q,K相似度保留原值,而0位置代表Q,K相似度改为一个极负的值,使得注意力权重为0,如图所示

下三角掩码对自注意力的影响

考虑到在训练过程中答案本身会进行该批次下的统一padding,因此还需要再叠加padding的mask掩码,杜绝padding单词对实词的表征影响,这个和编码器中的掩码一致,在源码中实现如下

# TODO 输出该批次下每个文本样本,在每个词步长下的mask向量,由于pad和词步长无关,所以每个步长下的mask向量相同,就是pad位置的是0
self_pad_mask = Lambda(lambda x: GetPadMask(x, x))(tgt_seq)
# TODO 只允许该词和该词前面的词纳入计算,下三角 [batch_size, seq_len-1, seq_len-1]
# TODO 输出该批次下每个文本样本,在每个词步长下的mask向量,由于是生成模型,只能基于当下词和前词进行计算,所以是个下三角
self_sub_mask = Lambda(GetSubMask)(tgt_seq)
# TODO 只要两个有一个为0则为0 mask掉
self_mask = Lambda(lambda x: K.minimum(x[0], x[1]))([self_pad_mask, self_sub_mask])

其中self_pad_mask为答案句子的padding掩码,对于答案中每个单词,该掩码是相同的,例如ABCD四个单词组成的答案,其中D词为padding,有词位置仅有ABC,则self_pad_mask如下

编码器层的padding掩码

源码使用K.minimum将两个掩码合并,每个位置取最小值,相当于两个掩码只要有任意一种情况需要被遮蔽则就应该被遮蔽,如图所示

解码器的自注意力最终掩码

通过掩码机制,一齐并行输入文本得到的每个单词的自注意力表征和一个一个逐位循环预测进行的表征效果等同。


解码器交互注意力层和掩码

自注意力层是解码器输入自身的特征表征,而交互注意力层用到了编码器的输出,将Decoder和Encoder信息进行融合。交互注意力层和编码器中的注意力层网络结构基本没有差异,但是由于有两方进行交互因此Q,K,V的分配上需要单独设计,解码器交互注意力层的特写如下

交互注意力层

前文提到在Encoder-Decoder框架中会使用对齐函数来计算目标单词和编码器输出的每个单词对齐的可能性大小,而在Transformer中使用点乘注意力来作为对齐函数,解码器和编码器作为该对齐函数的输入,来比对当前解码器位置应该更多地关注哪个源文本位置,进一步将源文本信息携带到当前编码位置,因此解码器交互注意力层Q,K,V安排如下

  • Q:解码器自注意力层的输出
  • K:编码器的输出
  • V:编码器的输出

在训练之前需要对所有源文本和目标文本进行单独padding处理,源文本的seq_length通常不等于目标文本的seq_length,因此交互注意层计算的注意矩阵不是一个方阵,计算示意图如下

交互注意力计算

以解码层的单词A为例,A需要融合编码器中的a,b,c,d四个单词的信息表征,其中得分权重分别为(3.2,1.3,0.9,-1),同样的交互注意力也需要mask掩码,掩码的维度和注意力权重矩阵维度相同,在源码中实现如下

def GetPadMask(q, k):'''shape: [B, Q, K]'''# TODO [batch_size, seq_len - 1] => [batch_size, seq_len - 1, 1]ones = K.expand_dims(K.ones_like(q, 'float32'), -1)# TODO [batch_size, 1, seq_len - 1]mask = K.cast(K.expand_dims(K.not_equal(k, 0), 1), 'float32')# TODO [batch_size, seq_len-1, seq_len-1],相当于对mask直接复制# TODO 输出该批次下每个文本样本,在每个词步长下的mask向量,由于pad和词步长无关,所以每个步长下的mask向量相同,就是pad位置的是0mask = K.batch_dot(ones, mask, axes=[2, 1])return mask# TODO 参数1决定步长,参数二决定pad
enc_mask = Lambda(lambda x: GetPadMask(x[0], x[1]))([tgt_seq, src_seq])

此处的掩码根据padding机制生成,其中GetPadMask的第一个参数tgt_seq决定文本步长,第二个参数决定padding的依据,显然使用了源文本的padding信息,例如在源文本abcd中d为padding位置,则mask矩阵如下

交互注意力掩码

代表解码器层中A,B,C都需要携带编码器中的a,b,c,d信息,但是A,B,C每个位置计算的时候都需要舍弃源文本中的d信息,因为d信息是padding的干扰项。
交互注意力层计算解码器输入每个单词位置相对于编码器源文本的表征,解码器每个输入本身通过下三角mask机制代表当前和之前位置信息,而编码器源文本是完整可见的,因此解码器每个位置都可以和全部编码器输出计算注意力,只需要主要编码器的padding部分在交互注意力的时候同样需要删除,源文本中的padding信息不能带入到解码器中,示意图如下

解码器中mask工作流程


解码器输出和损失函数

解码器经过自注意力层提取当前预测位置的表征,经过交互注意力层以当前预测位置的表征和编码器层的中间状态进行对齐,融合编码器中的信息表征到解码器中来,令该批次样本数为B,解码器最大文本长度为L,embedding维度为D,则解码器最终输出一个三维向量,维度为[B,L-1,D],其中L-1是在训练过程中使用错位训练策略导致。
Transformer在解码器的输出层加入线性层Linear使每个位置的embedding表征映射到预测词库中每个词的概率,以英文到德文翻译的数据集为例,输出为3665个样本中德文单词的得分,源码实现如下

target_layer = TimeDistributed(Dense(o_tokens.num(), use_bias=False))# TODO decode out [batch_size, seq_len-1, 256]
dec_output = self.decoder(tgt_emb, tgt_seq, src_seq, enc_output, active_layers=active_layers)
# TODO final_output [batch_size, seq_len-1, 3665]
final_output = target_layer(dec_output)

因为错位训练的存在,L-1代表从源文本中出去之外,第2个单词到最后位置的信息表征,因此只需要将Linear的结果和实际的错位单词id进行比对即可计算该条样本的损失,源码中采用softmax交叉熵来计算每个L-1位置的loss,如果该位置实际为padding则忽略loss,最终采用所有实词位置的loss均值作为该样本的总损失,采用该批次的平均损失作为该批次的总损失。

        def get_loss(y_pred, y_true):y_true = tf.cast(y_true, 'int32')# loss=[None, len_seq],输出每个样本,在每个词位置的softmax lossloss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred)# TODO 对于padding位置的预测,该预测预测,但是不记入lossmask = tf.cast(tf.not_equal(y_true, 0), 'float32')# 对非mask位置求均值loss = tf.reduce_sum(loss * mask, -1) / tf.reduce_sum(mask, -1)loss = K.mean(loss)return loss

全文完毕,本节基于训练过程探究Decoder的原理,下一节会基于预测部分来完整理解Decoder的工作方式。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/28015.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文发表CN期刊《高考》是什么级别的刊物?

论文发表CN期刊《高考》是什么级别的刊物&#xff1f; 《高考》是由吉林省长春出版社主管并主办的省级教育类期刊&#xff0c;期刊以科教兴国战略为服务宗旨&#xff0c;专门反映和探索国内外教育教学和科研实践的最新成果。该期刊致力于为广大教育工作者提供一个高质量的学术…

idea自定义注释模板

1、打开配置 setting -> Editor -> Live Template 2、添加TemplateGroup&#xff0c;并在添加的TemplateGroup下加LiveTemplate 3、配置Live Template 内容&#xff1a; **** Description: * $param$* return $return$ * author $user$* date $date$ $time$**/变量…

oracle RAC安装 保姆级教程

使用SSHXmanager 我的本地IP是172.17.68.68 服务器配置 [rootrac12-1 ~]# cat /etc/hosts 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6 #Public IP …

ARP协议相关

把ip地址解析成mac地址这里的mac地址就是路由器的mac地址 免费ARP 源ip和目的ip都是一样的&#xff0c;那怎么让其他人更新arp表呢&#xff1f;&#xff1f; 是因为目标mac是全f&#xff0c;是一个广播报文 如果冲突就是ip一样但是mac又不一样 代理ARP pc1和pc4是在同一个子网…

[DDR4] DDR1 ~ DDR4 发展史导论

依公知及经验整理&#xff0c;原创保护&#xff0c;禁止转载。 专栏 《深入理解DDR4》 内存和硬盘是电脑的左膀右臂&#xff0c; 挑起存储的大梁。因为内存的存取速度超凡地快&#xff0c; 但内存上的数据掉电又会丢失&#xff0c;一直其中缓存的作用&#xff0c;就像是我们的工…

四川汇聚荣聚荣科技有限公司是干什么的,拼多多运营如何做?

四川汇聚荣聚荣科技有限公司是干什么的&#xff0c;拼多多运营如何做?随着电商行业的快速发展&#xff0c;越来越多的企业开始涉足这一领域。其中&#xff0c;四川汇聚荣聚荣科技有限公司便是其中的一员。那么&#xff0c;这家公司究竟是做什么的呢?简单来说&#xff0c;它是…

WSL Ubuntu安装TensorFlow-GPU、PyTorch-GPU

在Windows 11的WSL Ubuntu中安装TensorFlow-GPU、PyTorch-GPU 0、WSL Ubuntu安装 在Windows 11的商店中下载即可&#xff0c;此处以Ubuntu22.04.3为例 1、CUDA Toolkit安装 参考公孙启的文章Windows11 WSL Ubuntu Pycharm Conda for deeplearning前往nVidia官网下载CUDA …

靠谱放心!康姿百德柔压磁性豪华枕质量大揭秘

康姿百德柔压磁性豪华枕&#xff0c;舒爽透气呵护青春期娇嫩肌肤 良好的睡眠对青少年的生长发育至关重要&#xff0c;想要获得高质量睡眠&#xff0c;除了选择合适的床垫之外&#xff0c;一款合适的枕头同样是打造优质睡眠环境的重要一环。康姿百德集团有限公司深耕睡眠领域已…

electron模板【lectron-react-boilerplate】多窗口配置【HtmlWebpackPlugin】多页面配置

如果您正在使用electron-react-boilerplate进行快速的Electron应用程序开发,您可能会遇到想要在桌面应用程序中拥有多个原生窗口的情况。 MacOS窗口图像由OpenClipart-Vectors提供,来源Pixabay。 开始之前需要提及的事情! Electron有一个主进程和渲染进程的模式。可以有多个…

【博客718】时序数据库基石:LSM Tree(log-structured merge-tree)

时序数据库基石&#xff1a;LSM Tree(log-structured merge-tree) 1、为什么需要LSM Tree LSM被设计来提供比传统的B树更好的写操作吞吐量&#xff0c;通过消去随机的本地更新操作来达到这个目标&#xff0c;使得写入都是顺序写&#xff0c;而不是随机写。 那么为什么这是一个…

Redis在互联网大厂中的应用案例分析

携程金融的Redis架构 携程金融在经过多年的演进后,形成了多层次的系统架构,其中基础数据(如用户信息、产品信息、订单信息等)由底层系统产生,并服务于所有的金融系统。这些基础数据通过统一的缓存服务(系统名utag)进行缓存。缓存数据具有全量、准实时、永久有效的特点,…

【漏洞复现】东胜物流软件 GetProParentModuTreeList SQL注入漏洞

0x01 产品简介 东胜物流软件是青岛东胜伟业软件有限公司-款集订单管理、仓库管理、运输管理等多种功能于一体的物流管理软件。该公司初创于2004年11月(前身为青岛景宏物流信息技术有限公司)&#xff0c;专注于航运物流相关环节的产品和服务。东胜物流信息管理系统货代版采用MS…

个人网站制作 Part 26 添加在线日历功能 | Web开发项目添加页面缓存

文章目录 &#x1f469;‍&#x1f4bb; 基础Web开发练手项目系列&#xff1a;个人网站制作&#x1f680; 添加在线日历功能&#x1f528;使用日历服务&#x1f527;步骤 1: 选择日历服务&#x1f527;步骤 2: 安装FullCalendar&#x1f527;步骤 3: 创建FullCalendar组件&…

【健身经验】3 拜拜肉

1 女性手臂粗细与紧实程度&#xff0c;除了取决于运动和生活习惯&#xff0c;很大程度上取决于遗传因素 2 2 如果体脂已经很正常了&#xff0c;整体看起来匀称不胖&#xff0c;偏偏这两块肌肉附近的脂肪“顽固不化”的话&#xff0c;可以试试以下两个简单方法 对于体脂率正常…

XUbuntu22.04之ssh+x11显示远程图形到本机(二百四十四)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

手把手带你开发一套用户权限系统,精确到按钮级

在实际的软件项目开发过程中&#xff0c;用户权限控制可以说是所有运营系统中必不可少的一个重点功能&#xff0c;根据业务的复杂度&#xff0c;设计的时候可深可浅&#xff0c;但无论怎么变化&#xff0c;设计的思路基本都是围绕着用户、角色、菜单这三个部分展开。 如何设计…

光电展厅如何运用数字多媒体实现互动传播?

近年来&#xff0c;展厅设计行业在多媒体技术的推动下&#xff0c;迎来了前所未有的变革与繁荣。在这一浪潮中&#xff0c;光电展厅凭借其智能化科技的应用和紧跟时代潮流的设计&#xff0c;成为了电力知识普及的璀璨舞台。它不仅在展示形式上实现了多元化和创新&#xff0c;更…

【linux】认识“文件”的本质,理解“文件系统”的设计逻辑,体会linux优雅的设计理念

⭐⭐⭐个人主页⭐⭐⭐ ~~~~~~~~~~~~~~~~~~ C站最❤❤❤萌❤❤❤博主 ~~~~~~~~~~~~~~~~~~~ ​♥东洛的克莱斯韦克-CSDN博客♥ ~~~~~~~~~~~~~~~~~~~~ 嗷呜~ ✌✌✌✌ 萌妹统治世界~ &#x1f389;&#x1f389;&#x1f389;&#x1f389; ✈✈✈✈相关文章✈✈✈✈ &#x1f4a…

REST风格

黑马程序员Spring Boot2 文章目录 1、REST简介1.1 优点1.2 REST风格简介1.3 注意事项 2、RESTful入门案例 1、REST简介 1.1 优点 隐藏资源的访问行为&#xff0c;无法通过地址的值对资源适合中操作书写简化 1.2 REST风格简介 按照RST风格访问资源时使用行为动作区分对资源进…

unity跑酷游戏(源码)

包括&#xff1a;触发机关&#xff0c; 优化 fog的调试 效果 碰到障碍物游戏时间暂停&#xff08;挂载到障碍物上&#xff09; 上面需要有碰撞体 游戏物体上需要有标签 using System.Collections; using System.Collections.Generic; using UnityEngine;public class Barri…