模型训练时报错Failed to allocate 12192768 bytes in function ‘cv::OutOfMemoryError‘

目录

报错信息:

查找网上解决方法:

改进思路:

改进方法:


报错信息:

D:\Programs\miniconda3\envs\python311\python.exe D:\python\project\VisDrone2019-DET-MOT\train.py 
Ultralytics YOLOv8.1.9 🚀 Python-3.11.7 torch-2.2.0 CUDA:0 (NVIDIA GeForce GTX 1650, 4096MiB)
engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=D:\python\project\VisDrone2019-DET-MOT\class.yaml, epochs=100, time=None, patience=50, batch=2, imgsz=900, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=train4, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train4
Overriding model.yaml nc=80 with nc=12from  n    params  module                                       arguments                     0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]             3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]             5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]           9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]                 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]                  16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]                 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 22        [15, 18, 21]  1    753652  ultralytics.nn.modules.head.Detect           [12, [64, 128, 256]]          
Model summary: 225 layers, 3013188 parameters, 3013172 gradients, 8.2 GFLOPsTransferred 319/355 items from pretrained weights
Freezing layer 'model.22.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed ✅
WARNING ⚠️ imgsz=[900] must be multiple of max stride 32, updating to [928]
train: Scanning E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\labels... 30669 images, 0 backgrounds, 0 corrupt: 100%|██████████| 30669/30669 [00:35<00:00, 875.04it/s] 
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\0000137_02220_d_0000163.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\0000140_00118_d_0000002.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\9999945_00000_d_0000114.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\9999987_00000_d_0000049.jpg: 1 duplicate labels removed
train: WARNING ⚠️ E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\images\9999998_00219_d_0000175.jpg: 1 duplicate labels removed
train: New cache created: E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\train\labels.cache
val: Scanning E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\val\labels... 3394 images, 1 backgrounds, 0 corrupt: 100%|██████████| 3394/3394 [00:02<00:00, 1257.53it/s]
val: New cache created: E:\DeepLearning\AI\VisDrone2019\VisDrone2019-DET-MOT\val\labels.cache
Plotting labels to runs\detect\train4\labels.jpg... 0%|          | 0/15335 [00:00<?, ?it/s]optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... 
optimizer: SGD(lr=0.01, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 928 train, 928 val
Using 8 dataloader workers
Logging results to runs\detect\train4
Starting training for 100 epochs...Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size1/100      2.56G        nan        nan        nan         77        928: 100%|██████████| 15335/15335 [1:25:43<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.67it/s]all       3394     158168    0.00413   1.32e-05    0.00208   0.000415Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size2/100      3.19G        nan        nan        nan         44        928: 100%|██████████| 15335/15335 [1:25:33<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00401   1.32e-05    0.00203   0.000406Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size3/100       2.1G        nan        nan        nan        134        928: 100%|██████████| 15335/15335 [1:25:26<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00154   1.14e-05   0.000779   7.79e-05Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size4/100      3.26G        nan        nan        nan         99        928: 100%|██████████| 15335/15335 [1:26:01<00:00,  2.97it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.55it/s]all       3394     158168    0.00409   1.32e-05    0.00206   0.000412Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size5/100      3.16G        nan        nan        nan         90        928: 100%|██████████| 15335/15335 [1:25:27<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.000330%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size6/100      2.25G        nan        nan        nan         85        928: 100%|██████████| 15335/15335 [1:25:42<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.54it/s]all       3394     158168     0.0043   1.32e-05    0.00216   0.000343Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size7/100      3.53G        nan        nan        nan         39        928: 100%|██████████| 15335/15335 [1:25:29<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.68it/s]all       3394     158168    0.00401   1.32e-05    0.00202   0.000322Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size8/100      2.61G        nan        nan        nan         28        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168     0.0016   1.14e-05    0.00081   0.000162Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size9/100       3.4G        nan        nan        nan        109        928: 100%|██████████| 15335/15335 [1:25:51<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.54it/s]all       3394     158168    0.00419   1.32e-05    0.00211   0.000338Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size10/100      2.79G        nan        nan        nan         35        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168     0.0016   1.14e-05    0.00081    8.1e-050%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size11/100      3.68G        nan        nan        nan        193        928: 100%|██████████| 15335/15335 [1:25:28<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.65it/s]all       3394     158168    0.00163   1.14e-05   0.000826   8.26e-050%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size12/100      3.38G        nan        nan        nan         41        928: 100%|██████████| 15335/15335 [1:25:48<00:00,  2.98it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.55it/s]all       3394     158168    0.00419   1.32e-05    0.00211   0.0003380%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size13/100      3.09G        nan        nan        nan         72        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.71it/s]all       3394     158168    0.00427   1.32e-05    0.00215   0.000346Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size14/100      2.11G        nan        nan        nan        135        928: 100%|██████████| 15335/15335 [1:25:26<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.000330%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size15/100       3.5G        nan        nan        nan         35        928: 100%|██████████| 15335/15335 [1:26:21<00:00,  2.96it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:52<00:00,  7.54it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.00033Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size16/100       3.1G        nan        nan        nan         29        928: 100%|██████████| 15335/15335 [1:25:27<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.69it/s]all       3394     158168    0.00405   1.32e-05    0.00204   0.000323Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size17/100      2.52G        nan        nan        nan          9        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.71it/s]all       3394     158168    0.00405   1.32e-05    0.00204   0.0003230%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size18/100      3.05G        nan        nan        nan         46        928: 100%|██████████| 15335/15335 [1:25:26<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00412   1.32e-05    0.00207    0.000330%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size19/100      2.82G        nan        nan        nan         74        928: 100%|██████████| 15335/15335 [1:25:25<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00427   1.32e-05    0.00215   0.000346Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size20/100      2.88G        nan        nan        nan        108        928: 100%|██████████| 15335/15335 [1:25:24<00:00,  2.99it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 849/849 [01:50<00:00,  7.70it/s]all       3394     158168    0.00423   1.32e-05    0.00213   0.0003390%|          | 0/15335 [00:00<?, ?it/s]Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size21/100      3.52G        nan        nan        nan        102        928:  84%|████████▎ | 12806/15335 [1:11:20<14:05,  2.99it/s]
Traceback (most recent call last):File "D:\python\project\VisDrone2019-DET-MOT\train.py", line 20, in <module>results = model.train(data=r"D:\python\project\VisDrone2019-DET-MOT\class.yaml", imgsz=900, epochs=100, batch=2,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\engine\model.py", line 601, in trainself.trainer.train()File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\engine\trainer.py", line 208, in trainself._do_train(world_size)File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\engine\trainer.py", line 358, in _do_trainfor i, batch in pbar:File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\tqdm\std.py", line 1182, in __iter__for obj in iterable:File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\build.py", line 49, in __iter__yield next(self.iterator)^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\dataloader.py", line 631, in __next__data = self._next_data()^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\dataloader.py", line 1346, in _next_datareturn self._process_data(data)^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\dataloader.py", line 1372, in _process_datadata.reraise()File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\_utils.py", line 722, in reraiseraise exception
cv2.error: Caught error in DataLoader worker process 2.
Original Traceback (most recent call last):File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\_utils\worker.py", line 308, in _worker_loopdata = fetcher.fetch(index)^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 51, in fetchdata = [self.dataset[idx] for idx in possibly_batched_index]^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 51, in <listcomp>data = [self.dataset[idx] for idx in possibly_batched_index]~~~~~~~~~~~~^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\base.py", line 251, in __getitem__return self.transforms(self.get_image_and_label(index))^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\base.py", line 257, in get_image_and_labellabel["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index)^^^^^^^^^^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\data\base.py", line 157, in load_imageim = cv2.imread(f)  # BGR^^^^^^^^^^^^^File "D:\Programs\miniconda3\envs\python311\Lib\site-packages\ultralytics\utils\patches.py", line 26, in imreadreturn cv2.imdecode(np.fromfile(filename, np.uint8), flags)^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
cv2.error: OpenCV(4.9.0) D:\a\opencv-python\opencv-python\opencv\modules\core\src\alloc.cpp:73: error: (-4:Insufficient memory) Failed to allocate 12192768 bytes in function 'cv::OutOfMemoryError'Process finished with exit code 1

查找网上解决方法:

改进思路:

报错OutOfMemoryError是说内存不足,上述方法本质上就是将图片缩小

改进方法:

模型训练时把epochs改小,这里下调到20,将图片大小imgsz改小

if __name__ == '__main__':os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"# 加载模型# model = YOLO("yolov8n.yaml")  # 从头开始构建新模型model = YOLO("yolov8n.pt")  # 加载预训练模型(推荐用于训练)# Use the modelresults = model.train(data="class.yaml", imgsz=1120, epochs=20, batch=4, device=0)  # 训练模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/2673.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】gdb的简单使用

文章目录 一、gdb是什么&#xff1f;二、使用说明1. 安装2. 注意事项3. 常用调试指令3.1 gdb3.2 l3.3 r3.4 n3.5 s3.6 b3.7 info b3.8 finish3.9 p3.10 set var3.11 c3.12 d breakpoints3.13 d n3.14 disable/enable breakpoints3.15 disable/enable n3.16 info b3.17 display …

复习python函数

复习python函数 1.对函数的理解函数的传递方式返回值 return可通过help()函数查看函数说明作用域 2.不定长参数3.递归4.高阶函数将函数作为参数传递将函数作为返回值返回 5.匿名函数6.装饰器 1.对函数的理解 函数可以用来保存一些可执行的代码&#xff0c;并且可以在需要时&am…

如何给word中的拼音加声调?分享3个方法

一&#xff0c;前言 在Word文档中标注拼音声调&#xff0c;是许多人在处理中文文档时经常需要面对的问题。对于不熟悉拼音的人来说&#xff0c;这可能会是一个挑战。但是&#xff0c;通过掌握一些简单的步骤和技巧&#xff0c;我们可以轻松地在Word文档中标注拼音声调。 二&a…

wsl2 中docker安装完毕后无法正常启动

wsl2 中docker安装完毕后无法正常启动 1、背景2、目标3、环境4、原因4、操作5.1、查看配置5.2、 切换配置5.3、启动docker5.4、验证docker 1、背景 在win10中安装wsl2体验linux操作系统&#xff0c;按照docker官网步骤安装&#xff0c;安装完毕后面提示 $ docker ps Cannot co…

云计算中的过度授权:安全隐患与应对策略

云计算凭借其弹性、可扩展等优势&#xff0c;已经成为诸多企业组织拓展业务的重要基础设施之一。然而&#xff0c;与传统IT架构相比&#xff0c;云计算环境的安全管理也面临着新的挑战。过度授权 (Overprivileging) 便是云安全领域亟待解决的主要问题之一&#xff0c;本文将带领…

为什么我的 Mac 运行缓慢以及如何使用CleanMyMac X修复它

近些年伴随着苹果生态的蓬勃发展&#xff0c;越来越多的用户开始尝试接触Mac电脑。然而很多人上手Mac后会发现&#xff0c;它的使用逻辑与Windows存在很多不同&#xff0c;而且随着使用时间的增加&#xff0c;一些奇奇怪怪的文件也会占据有限的磁盘空间&#xff0c;进而影响使用…

jasypt组件死锁bug案例分享

事故描述 1、上午9.55发布了一个Apollo动态配置参数&#xff1b; 2、片刻后&#xff0c;服务器接口开始出现大量的超时告警&#xff0c;似乎是某资源被耗尽不足分配&#xff1b; 3、正值业务请求高峰的上午十点&#xff08;平台上午10点会有一些活动会拉一波用户流量&#x…

HTML表单(详解网页表单如何实现)

目录 一、表单介绍 1.概念 二、表单用法 1.HTML表单 2.HTML 表单 - 输入元素 2.1.文本域&#xff08;Text Fields&#xff09; 2.2.密码字段 2.3.单选按钮&#xff08;Radio Buttons&#xff09; 2.4.复选框&#xff08;Checkboxes&#xff09; 2.5.提交按钮(Submit)…

人人都是开发者的时代,学编程还有用吗?

欢迎大家在 GitHub 上 Star 我们&#xff1a; 分布式全链路因果学习系统 OpenASCE: https://github.com/Open-All-Scale-Causal-Engine/OpenASCE 大模型驱动的知识图谱 OpenSPG: https://github.com/OpenSPG/openspg 大规模图学习系统 OpenAGL: https://github.com/TuGraph-…

检查*.bib参考文献是否重复

安装bibtexparser pip install bibtexparser 代码 import bibtexparser from difflib import SequenceMatcherdef parse_bib_file(filename):with open(filename, r, encodingutf-8) as bibfile:bib_database bibtexparser.load(bibfile)return bib_database.entriesdef fi…

【电控笔记5.10】Luenberger估测器

Luenberger估测计 单积分器:pi控制器的补偿 双积分器:使用pid控制器的补偿 除了受控厂跟传感器,其他都在mcu 去掉Rs就是一个PLL锁相环 带宽比PLL更大

齐护K210系列教程(九)_## 播放音频文件wav

播放音频文件wav 播放音频只支持带喇叭的型号&#xff1a;AIstart_掌机、AIstart_Mini AIstart可以播放SD卡中的wav音频文件&#xff0c;在编写程序前请将文件准备好存放到SD卡内。 注&#xff1a;播放wav格式音频&#xff1a;wav格式的音频频率不能超过16KHZ。 1&#xff0…

ui生成代码详细教程

被askmanyai的图生代码技术秀到了&#xff01;前端开发效率&#xff0c;提升到秒级 完全吊打了阿里的图生代码技术&#xff01; 上传一张网站图片或者UI稿&#xff0c;然后用askmanyai生成实现这个网站的代码的教程来啦&#xff01; 在askmanyai的中文网站上一分钟就能实现&…

simulink使用俩种方式封装(mask)画板/子系统的步骤

文章目录 创建子系统创建封装编制封装以参数控件方式封装以代码方式封装 添加约束效果 对封装概念不熟的可以看simulink封装概述&#xff0c;这是我简化的。我还是推荐看官方帮助文档 创建子系统 搭建一个简易的加法模型 &#xff0c;创建子系统 创建封装 右键-》封装-》创建封…

spring @value @configurationProperties比较

今天项目中需要使用数组的方式 来加载一批 配置 yml: xxxx: - xxxxx - xsssss javaBean Value("${xxxxx.xxxxx}") private List<String> xxxs; 启动时候报错&#xff0c;无法加载&#xff0c;TM试验了1个小时&#xff0c;我一开始想到是格式的问题&#x…

VirtualFlow亮相核反应堆技术全国重点实验室2024学术年会

为加强先进核能技术领域科技创新与应用&#xff0c;核反应堆技术全国重点实验室及先进核能技术全国重点实验室2024年学术年会在四川成都启幕&#xff0c;9名院士和近百家科研院所、高校和企业等近700名专家学者齐聚一堂&#xff0c;聚焦和探讨核反应堆及先进核能重大基础理论和…

震惊!小红书矩阵账号管理-批量发布笔记

“小红书引流软件矩阵工具-笔记批量发” 昨天&#xff0c;有个粉丝急匆匆地来找我&#xff0c;一脸焦急地说&#xff1a;“大佬&#xff0c;我现在运营着好几个小红书账号&#xff0c;每天都要发布内容&#xff0c;可把我忙坏了&#xff0c;有没有什么高效的管理方法啊&#xf…

【学习笔记二十五】EWM PPF自动WT后台配置和前台展示

一、概述 SAP EWM(Extended Warehouse Management)模块中的PPF(Post Processing Framework)是一个用于执行通用功能和流程的工具。PPF为SAP EWM提供了一个统一的接口,用于触发各种动作,例如打印托盘标签、交货单、拣选票或发送消息和传真。这些动作在特定条件满足时生成,…

电力作业平台车必备:防倾倒预警装置,智能守护你的工作

引言 在电力作业中&#xff0c;平台车作为一种重要的高空作业设备&#xff0c;广泛应用于线路检修、设备维护等工作场景。然而&#xff0c;平台车在高空作业过程中存在的倾倒风险&#xff0c;一直是困扰作业人员的难题。为了有效预防此类事故的发生&#xff0c;防倾倒预警装置…

电子温度计不准需要怎么处理?

电子温度计不准需要怎么处理&#xff1f; 首选将温度计完全浸入温度为0℃左右的水中&#xff0c;使温度计指示值与0℃相等&#xff0c;拿出测量待测物的温度。其次将温度计完全浸入温度为100℃左右的水中&#xff0c;使温度计指示值与100℃相等&#xff0c;拿出测量待测物的温…