④-1单细胞学习-cellchat单数据代码补充版

目录

1,数据输入及处理

①载入包和数据

②CellChat输入数据准备

③构建CellChat对象

④数据预处理

2,细胞通讯预测

①计算细胞通讯概率

②提取配受体对细胞通讯结果表

③提取信号通路水平的细胞通讯表

④细胞互作关系可视化

1)细胞亚群间配受体数目网络图

2)细胞亚群间配受体概率/强度网络图

3)每个细胞亚群的配受体通讯概率进行单独展示

​编辑4)数量和强度弦图合并

3,信号通路水平的细胞通讯分析

4,信号通路相关配受体对水平的细胞通讯分析

5,多个配受体对/信号通路水平介导的细胞通讯可视化

①指定信号通路

②参与目标信号通路的基因在各细胞亚群的表达分布展示

③气泡图

1,数据输入及处理
①载入包和数据

官方学习:focuslyj/CellChat - 码云 - 开源中国 (gitee.com)

这里提供的应该是counts data数据

rm(list=ls())
library(CellChat)
library(patchwork)
library(ggplot2)
library(Seurat)
library(ggalluvial)#绘制桑基图
library(expm)
library(sna)
library(NMF)
options(stringsAsFactors = FALSE)##输入数据不自动转换成因子(防止数据格式错误)
load("data_humanSkin.Rdata")#数据加载:这里是count data数据
CellChat输入数据准备
#需标准化的基因表达量矩阵和细胞分组信息文件
#不同输入格式处理方式不同
data.input = data_humanSkin$data#需标准化的基因表达量矩阵和细胞分组信息文件
meta = data_humanSkin$meta
data.input[1:6,1:3]#表达count
head(meta);table(meta$condition) #含normal(NL)和diseases(LS)
cell.use = rownames(meta)[meta$condition == 'LS'] #提取LS的细胞名称
data.input = data.input[, cell.use]#提取LS表达矩阵
meta = meta[cell.use, ]#提取LS细胞信息
identical(rownames(meta),colnames(data.input)) #检查矩阵列名和分组文件行名是否一致
unique(meta$labels) #检查细胞亚群标签类型
构建CellChat对象
#接下来构建CellChat对象
cellchat <- createCellChat(object = data.input, #支持normalized表达矩阵,Seurat对象,和SingleCellExperiment对象meta = meta, #meta文件group.by = 'labels') #meta中的细胞分类列
#cellchat <- addMeta(cellchat, meta = meta)#创建CellChat对象未 cellmeta信息时添加信息
cellchat <- setIdent(cellchat, ident.use = 'labels') #将label设置为显示的默认顺序
levels(cellchat@idents) #查看celltype和factor顺序
table(cellchat@idents) #每个celltype中的细胞数#设置配受体数据库(CellChatDB):
CellChatDB <- CellChatDB.human #(CellChatDB.human) (CellChatDB.mouse)
showDatabaseCategory(CellChatDB) #查看描述该数据库组成的饼状图
dplyr::glimpse(CellChatDB$interaction) #查看数据库结构#直接使用CellChatDB全库进行细胞通讯分析:
##CellChatDB.use <- CellChatDB # simply use the default CellChatDB
#选择数据库中特定子集进行细胞通讯分析:
CellChatDB.use <- subsetDB(CellChatDB, search = 'Secreted Signaling') #可选择Secreted Signaling、ECM-Receptor或Cell-Cell Contact
cellchat@DB <- CellChatDB.use#将数据库添加到CellChat对象中(DB)
④数据预处理
#数据预处理;信号基因的表达矩阵子集化,节省计算成本
cellchat <- subsetData(cellchat) #必选的step,取上一步CellChatDB.use中信号基因的表达矩阵子集,赋值到cellchat@data.Signaling
#future::plan('multiprocess', workers = 4) # do parallel (可以不用选择平行计算)
#鉴定与每个细胞亚群相关的过表达信号基因:基于表达该基因的细胞比例、差异倍数和p值判定。
cellchat <- identifyOverExpressedGenes(cellchat,only.pos = TRUE, #仅返回positive markersthresh.pc = 0, #细胞比例阈值thresh.fc = 0, #差异倍数thresh.p = 0.05) #P-Value
#计算结果赋值到cellchat@var.features:
head(cellchat@var.features$features) #过表达信号基因名
head(cellchat@var.features$features.info) #差异计算结果表
#识别过表达基因配体-受体互作:
cellchat <- identifyOverExpressedInteractions(cellchat)
head(cellchat@LR$LRsig) #计算结果赋值位置
#将基因表达数据映射到PPI网络(可跳过):
cellchat <- projectData(cellchat, PPI.human) #返回结果:cellchat@data.project
2,细胞通讯预测
①计算细胞通讯概率
#细胞通讯预测##############################################
cellchat <- computeCommunProb(cellchat, raw.use = TRUE) #返回结果:cellchat@options$parameter
##默认使用原始表达数据(cellchat@data.Signaling),若想使用上一步PPI矫正数据,设置raw.use = TALSE
cellchat <- filterCommunication(cellchat, min.cells = 10) #细胞通讯过滤(设置每个亚群中进行细胞间通讯所需的最小细胞数)
提取配受体对细胞通讯结果表
#提取配受体对细胞通讯结果表:
df.net <- subsetCommunication(cellchat, slot.name = 'net')
head(df.net) #得到配受体对细胞通讯结果表#或访问其它感兴趣/特定的细胞通讯结果:
df.net1 <- subsetCommunication(cellchat,sources.use = c('LC'),targets.use = c('FBN1+ FIB')) #访问特定细胞对子集
head(df.net1)df.net2 <- subsetCommunication(cellchat, signaling = c('CD40')) #访问特定信号通路子集
head(df.net2)
提取信号通路水平的细胞通讯表

提取配受体对细胞通讯结果表:subsetCommunication函数

提取信号通路水平的细胞通讯表:computeCommunProbPathway函数

#提取信号通路水平的细胞通讯表:
cellchat <- computeCommunProbPathway(cellchat) #计算信号通路水平上的通讯概率
df.netp <- subsetCommunication(cellchat, slot.name = 'netP') #得到信号通路水平细胞通讯表
head(df.netp)
细胞互作关系可视化
1)细胞亚群间配受体数目网络图
cellchat <- aggregateNet(cellchat)#计算细胞对间通讯的数量和概率强度
#不同细胞亚群间的互作数量与概率/强度可视化:
groupSize <- as.numeric(table(cellchat@idents))##细胞亚群间配受体数目网络图:
par(mfrow = c(1,1), xpd = TRUE)
netVisual_circle(cellchat@net$count,vertex.weight = groupSize,weight.scale = T,label.edge = F,title.name = 'Number of interactions')

细胞通讯| 02.CellChat基础分析教程_哔哩哔哩_bilibili

2)细胞亚群间配受体概率/强度网络图
##细胞亚群间配受体概率/强度网络图:
par(mfrow = c(1,1), xpd = TRUE)
netVisual_circle(cellchat@net$weight,vertex.weight = groupSize,weight.scale = T,label.edge= F,title.name = 'Interaction weights/strength')

3)每个细胞亚群的配受体通讯概率进行单独展示

这里需要注意R绘图画板范围,可以将前面的绘图进行保存和devoff后再进行作图

#检查单个细胞亚群的互作信号强度;每个细胞进行单独展示##
mat <- cellchat@net$weight
par(mfrow = c(3,4), xpd = TRUE)
for (i in 1:nrow(mat)) {mat2 <- matrix(0, nrow = nrow(mat), ncol = ncol(mat), dimnames = dimnames(mat))mat2[i, ] <- mat[i, ]netVisual_circle(mat2, vertex.weight = groupSize, weight.scale = T, edge.weight.max = max(mat), title.name = rownames(mat)[i])
}
4)数量和强度弦图合并
#数量和强度弦图合并
par(mfrow = c(1,2), xpd = TRUE)
netVisual_circle(cellchat@net$count,vertex.weight = groupSize,weight.scale = T,label.edge = F,title.name = 'Number of interactions')
netVisual_circle(cellchat@net$weight,vertex.weight = groupSize,weight.scale = T,label.edge= F,title.name = 'Interaction weights/strength')

#保存cellchat对象:
save(cellchat, groupSize, file = c('humanSkin_CellChat.Rdata'))

3,信号通路水平的细胞通讯分析
cellchat@netP$pathways##信号通路查看
pathways.show <- c('GALECTIN')##以'GALECTIN'信号通路展示为例
#层级图(Hierarchy plot)绘制
levels(cellchat@idents)#查看细胞亚群及factor顺序:
#选择其中感兴趣的细胞亚群:
vertex.receiver = c(3,8,9,10)#为画图第一列的source列
par(mfrow = c(1,1))
netVisual_aggregate(cellchat,layout = c('hierarchy'), #"circle", "hierarchy", "chord"signaling = pathways.show,vertex.receiver = vertex.receiver)#选择展示的通路

别的图

par(mfrow = c(1,1))#展示网络图
netVisual_aggregate(cellchat,layout = c('circle'),signaling = pathways.show)
par(mfrow=c(1,1))#展示弦图
netVisual_aggregate(cellchat,layout = c('chord'),signaling = pathways.show)
par(mfrow=c(1,1))#展示热图
netVisual_heatmap(cellchat,signaling = pathways.show,color.heatmap = c("white", "#b2182b"))

4,信号通路相关配受体对水平的细胞通讯分析
netAnalysis_contribution(cellchat, signaling = pathways.show) #配受体对贡献条形图
pairLR.CXCL <- extractEnrichedLR(cellchat,  #提取细胞对signaling = pathways.show,geneLR.return = FALSE)
LR.show <- pairLR.CXCL[1,] #以贡献度top1的配受体对为例
pairLR.CXCL; LR.show

别的图

netVisual_individual(cellchat,#Hierarchy plot:layout = c('hierarchy'),signaling = pathways.show, #目标信号通路pairLR.use = LR.show, #目标配受体对vertex.receiver = vertex.receiver) #感兴趣的细胞亚群
#Circle plot:
netVisual_individual(cellchat,layout = c('circle'),signaling = pathways.show,pairLR.use = LR.show)
#Chord diagram:
netVisual_individual(cellchat,layout = c('chord'),signaling = pathways.show,pairLR.use = LR.show)

5,多个配受体对/信号通路水平介导的细胞通讯可视化
指定信号通路
多个配受体对/信号通路水平介导的细胞通讯可视化######
levels(cellchat@idents)#指定信号通路
netVisual_bubble(cellchat,sources.use = 4,targets.use = c(5:11),signaling = c("CCL","CXCL"), #指定CCL和CXCL两个信号通路remove.isolate = FALSE)
#指定配受体对:
pairLR.use <- extractEnrichedLR(cellchat, signaling = c("CCL","CXCL","FGF")) #确定在目标信号通路中有重要作用的配受体对
pairLR.use
netVisual_bubble(cellchat,sources.use = 4,targets.use = c(5:11),pairLR.use = pairLR.use,#指定的受体对remove.isolate = TRUE)

②参与目标信号通路的基因在各细胞亚群的表达分布展示
#参与目标信号通路的基因在各细胞亚群的表达分布展示:
plotGeneExpression(cellchat, signaling = 'GALECTIN', type = 'violin') #小提琴图

③气泡图
plotGeneExpression(cellchat, signaling = 'GALECTIN', type = 'dot', color.use = c("white", "#b2182b")) #气泡图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/25395.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IO流(缓冲流)

1.字节缓冲流 原理&#xff1a;字节缓冲输入流自带8KB缓冲池;字节缓冲输出流自带8KB缓冲池 public static void main(String[] args) throws IOException {try(InputStream is new FileInputStream("D:\\pt\\123.jpg");//1.定义一个字节缓冲输入流包装原始的字节输…

Modbus主站和从站的区别

Modbus主站,从站 在工业自动化领域&#xff0c;Modbus是一种常用的通信协议&#xff0c;用于设备之间的数据交换。在Modbus通信中&#xff0c;主站和从站是两个关键的角色。了解主站和从站之间的区别对正确配置和管理Modbus网络至关重要。 Modbus主站的特点和功能 1.通信请求发…

硬盘坏了数据能恢复吗 硬盘数据恢复一般多少钱

在数字化时代&#xff0c;我们的生活和工作离不开电脑和硬盘。然而&#xff0c;硬盘故障是一个常见的问题&#xff0c;可能会导致我们的数据丢失。当我们的硬盘坏了&#xff0c;还能恢复丢失的数据吗&#xff1f;今天我们就一起来探讨关于硬盘坏了数据能恢复吗&#xff0c;硬盘…

Polar Web【困难】上传

Polar Web【困难】上传 Contents Polar Web【困难】上传探索&思路&效果进入环境绕过过程Webshell连接 EXPPayload 总结 探索&思路&效果 本题的主题可见为文件上传&#xff0c;详情在破解的过程中逐步发掘&#xff1a; 进入环境&#xff0c;为一个文件上传功界面…

定个小目标之刷LeetCode热题(14)

了解股票的都知道&#xff0c;只需要选择股票最低价格那天购入&#xff0c;在股票价格与最低价差值最大时卖出即可获取最大收益&#xff0c;总之本题只需要维护两个变量即可&#xff0c;minPrice和maxProfit&#xff0c;收益 prices[i] - minPrice,直接用代码描述如下 class …

vscode中执行python语句dir(torch)不返回结果

输入半天&#xff0c;发现在IDLE运行后的shell界面输入语句就会返回一大串。但是在vscode中老是不返回值。 结果恍然发现这没加print&#xff08;&#xff09;。 无语惨了。 家人们&#xff0c;这是python&#xff0c;而不是matlab。思维还没转换过来&#xff0c;笑死

umap降维,c++用法纪实

全是血泪&#xff0c;可惜对于大量数据&#xff0c;速度还是太慢。 一、代码 // ConsoleApplication2.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。 //#include <iostream>#include "knncolle/knncolle.hpp" #include "Umap.…

[数据集][图像分类]人种黄种人白人黑人等分类数据集56000张7类别

数据集类型&#xff1a;图像分类用&#xff0c;不可用于目标检测无标注文件 数据集格式&#xff1a;仅仅包含jpg图片&#xff0c;每个类别文件夹下面存放着对应图片 图片数量(jpg文件个数)&#xff1a;56000 分类类别数&#xff1a;7 类别名称:[“Black”,“East_Asian”,“Ind…

Vue3【十三】watch监视

Vue3【十三】watch监视 Vue3 中的watch祝你能监视以下四种数据 ref 定义的数据reactive定义的数据函数返回一个值一个包含上述内容的数组 案例截图 目录结构 案例代码 Person.vue <template><div class"person"><!-- <h1>Watch情况1&#xff…

C++基础编程100题-008 OpenJudge-1.3-06 甲流疫情死亡率

更多资源请关注纽扣编程微信公众号 http://noi.openjudge.cn/ch0103/06/ 描述 甲流并不可怕&#xff0c;在中国&#xff0c;它的死亡率并不是很高。请根据截止2009年12月22日各省报告的甲流确诊数和死亡数&#xff0c;计算甲流在各省的死亡率。 输入 输入仅一行&#xff…

数据中心运维管理方案

数据中心运维管理方案 随着数据中心在现代信息社会中的重要性日益增加&#xff0c;高效、可靠的运维管理方案成为保障其稳定运行的关键。本文将探讨数据中心运维管理的策略和实践&#xff0c;旨在为运维团队提供全面、系统的管理方法&#xff0c;确保数据中心在任何情况下都能…

Word Split Line

Word Split Line 分割线 https://download.csdn.net/download/spencer_tseng/89413772

小柴带你学AutoSar系列一、基础知识篇(5)makefile基础

Flechazohttps://www.zhihu.com/people/jiu_sheng 小柴带你学AutoSar总目录https://blog.csdn.net/qianshang52013/article/details/138140235?spm=1001.2014.3001.5501

国内docker镜像站全军覆没 如何自己部署一个Docker镜像加速服务器?

近日&#xff0c;在使用SJTUG提供的镜像加速拉取镜像的时候死活拉不下来&#xff0c;不管是 docker hub 还是国内的某些镜像站&#xff0c;同样都无法使用&#xff0c;虽然现在还有部分可用的镜像站&#xff0c;但也说不准某一天因为某些原因同样停止提供了&#xff0c;这时候就…

华为防火墙配置 SSL VPN

前言 哈喽&#xff0c;我是ICT大龙。本期给大家更新一次使用华为防火墙实现SSL VPN的技术文章。 本次实验只需要用到两个软件&#xff0c;分别是ENSP和VMware&#xff0c;本次实验中的所有文件都可以在文章的末尾获取。话不多说&#xff0c;教程开始。 什么是VPN 百度百科解…

Java核心: 类加载器

这一节我们来学习Java的类加载器&#xff0c;以及常用的类加载器实现URLClassLoader。 1. Java类加载器 类加载器用于将字节码读取并创建Class对象。我们知道JVM本身是用C写的&#xff0c;一开始执行的时候由C程序来加载并引导字节码的运行&#xff0c;这些由C编写的加载字节…

[数据集][目标检测]攀墙攀越墙壁数据集VOC格式-701张

数据集格式&#xff1a;Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件&#xff0c;仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数)&#xff1a;701 标注数量(xml文件个数)&#xff1a;701 标注类别数&#xff1a;1 标注类别名称:["fq"] 每个类别标…

htb-window-2-blue-smb

nmap msf 漏洞搜索 配置 获取flag

SpringBoot整合钉钉实现消息推送

前言 钉钉作为一款企业级通讯工具&#xff0c;具有广泛的应用场景&#xff0c;包括但不限于团队协作、任务提醒、工作汇报等。 通过Spring Boot应用程序整合钉钉实现消息推送&#xff0c;我们可以实现以下功能&#xff1a; 实时向指定用户或群组发送消息通知。自定义消息内容…

基于关键词自动采集抖音视频排名及互动数据(点赞、评论、收藏)

在当今的社交媒体时代&#xff0c;抖音作为一个热门短视频平台&#xff0c;吸引了大量用户和内容创作者。对于研究和分析抖音上的热门视频及其互动数据&#xff08;如点赞、评论、收藏等&#xff09;&#xff0c;自动化的数据采集工具显得尤为重要。本项目旨在开发一个基于关键…