GQA,MLA之外的另一种KV Cache压缩方式:动态内存压缩(DMC)

0x0. 前言

在openreview上看到最近NV的一个KV Cache压缩工作:https://openreview.net/pdf?id=tDRYrAkOB7 ,感觉思路还是有一些意思的,所以这里就分享一下。

简单来说就是paper提出通过一种特殊的方式continue train一下原始的大模型,可以把模型在generate过程中的KV Cache分成多个段,并且每个token都会学出来一个0或者1的标记,对于标记为1的token的KV Cache可以累加到上一个标记为1的token的KV Cache上(需要这两个token连续才可以累加),而不是concat,这样就可以高效压缩KV Cache,效果也是不错的,且可以配合GQA联合使用。此外,它在continue train或者推理prefill的时候仍然可以用上Flash Attention,推理的decode阶段可以用上Paged Attention。

但是读完方法部分发现这个方法也有几个缺陷,估计会失去工程应用的机会,只能当一篇paper读一下。第一点就是要对整个模型做全量参数的continue train,虽然训练的数据可以很少,但是能把大模型加载起来的成本已经非常高了,普通人肯定这一步就卡死了。第二,这种方法不能from scratch训练,这样就更阻碍了这种方法的广泛应用,毕竟MLA的成功一个重要原因就是因为Deepseek2直接用这个架构from scratch训出来的model并开源。另外,这里的开源链接目前是空的,还不能看到代码细节。

0x1. 摘要

Transformer 已经成为大型语言模型 (LLM) 的核心。然而,由于需要在内存中存储过去token的key value的缓存(KV Cache),而缓存的大小与输入序列长度和batch大小线性相关,因此生成仍然效率低下。为了解决这个问题,paper提出了动态内存压缩 (DMC),一种在推理时对KV Cache进行在线压缩的方法。最重要的是,模型学习在不同的注意力头和layer中应用不同的压缩率。paper将预训练的 LLM(如 Llama 2(7B、13B 和 70B))改造为 DMC Transformer,在 NVIDIA H100 GPU 上进行自回归推理时,实现了高达 ~3.7 倍的吞吐量提升。DMC 通过在原始数据的极小百分比上进行continue pretrained来应用,而无需添加任何额外的参数。paper发现,DMC 在高达 4 倍的缓存压缩的情况下,保留了原始的下游性能,优于经过微调的分组查询注意力 (GQA) 和key value驱逐策略 (H2O、TOVA)。GQA 和 DMC 可以结合起来获得复合收益。因此,DMC 在任何给定的内存预算内都适合更长的上下文和更大的batch。我们在 https://github.com/NVIDIA/Megatron-LM/tree/DMC 上发布了 DMC 代码和模型。

0x2. 介绍

首先还是提到了大模型推理的时候KV Cache会伴随着序列长度和Batch大小不断增长,这个问题在长文本生成(例如,对话和故事)或为大量用户查询提供服务时更加明显。然后为了缓解这个问题,GQA,Key-Value驱逐策略比如H20,TOVA等被提出,然后Paper说这些方法往往会牺牲预训练模型的精度。另外Flash-Attention等IO-aware或者子平方注意力算法等都无法改善KV Cache。

因此paper提出了动态内存压缩(DMC)方法对KV Cache进行压缩,如图 1 所示,在每个时间步长,DMC 会决定是将当前的key-value表示添加到缓存中,还是对它们与缓存中顶部的项进行加权平均。DMC 中的内存以亚线性方式增长,虽然比不上Linear Attention Transformer推理时的内存恒定,但明显好于Transformer。

在这里插入图片描述

作者团队使用了部分预训练数据(2%对应2倍压缩,4%对应4倍压缩)对应用了DMC的LLama 2(7B,13B)模型进行continue training。 paper在一些下游任务上评估了我们的 DMC 模型,例如 MMLU 用于事实性,QA 数据集用于常识推理,以及 HumanEval 用于代码。作者发现,DMC LLM 保持了与原始 LLM 相似的下游性能,而基线(如 GQA、H2O 和 TOVA)在高压缩率下会造成显著的性能下降。最后,作者表明 DMC 可以与 GQA 混合,使得它们的压缩率相乘。对于使用 GQA 8 倍预训练的 Llama 2 70B,DMC 2 倍可以实现总共 16 倍的压缩。

作者验证了 KV 缓存压缩在实践中可以转化为更有效的生成。 最后测量到,DMC 4 倍在不损失性能的情况下,将 Llama 2 7B 和 13B 在 NVIDIA H100 或 A100 GPU 上的推理吞吐量提高了 340% 到 370%。事实上,它使大模型能够在给定的内存预算中容纳更大的batch和更长的序列。

0x3. 动态内存压缩方法(DMC)

LLM 的推理通常受内存限制,而不是计算能力限制。减少 KV Cache的大小可以降低延迟并提高 GPU 利用率。DMC 是一种简单且廉价的在线压缩 KV Cache的方法。通过continue pretrain,可以教会预训练的 LLM 使用 DMC。

0x3.1 推理

考虑自回归推理过程中注意力层的正向传播。 在普通 Transformer 中,在每个时间步 t t t k t k_t kt v t v_t vt 都会被追加到 KV Cache中。另一方面,在 DMC 中,KV Cache更新过程有所不同,如算法 1 所示。首先,预测一个决策变量 α t ∈ \alpha_t \in αt {0, 1} (只能取0和1) 和一个重要性变量 ω t ∈ [ 0 , 1 ] ω_t ∈ [0, 1] ωt[0,1]。为了避免添加新的参数,我们分别重用 k t k_t kt q t q_t qt 中的第一个神经元来提取这两个分数。根据 α t \alpha_t αt,决定是将 KV 表示 k t k_t kt v t v_t vt 追加到缓存中,还是将其与缓存的最后一个元素累加。

在这里插入图片描述

具体来说,对于累加,paper根据对当前token预测的重要性分数 ω ω ω 和自上次预测 α = 0 \alpha = 0 α=0 以来所有 token 的重要性分数之和 z t z_t zt 进行加权平均。 事实上, α \alpha α变量有效地将输入序列分割:每个决策决定当前段是否应该继续( α = 1 \alpha = 1 α=1)或是否应该打开一个新段( α = 0 \alpha = 0 α=0)。更新后,DMC 的缓存长度为 l = ∑ t = 1 n ( 1 − α t ) < = n l = \sum_{t=1}^{n}(1-\alpha_t)<=n l=t=1n(1αt)<=n,而在普通 Transformer 中,它始终为 l = n l = n l=n。在下文中,将未压缩缓存的长度 n n n 与压缩长度 l l l 之间的比率 n / l n/l n/l 称为压缩率 (CR)。最后,多头自注意力与普通 Transformer 的计算方式类似,使用 KV Cache序列,区别在于不同头的 KV 序列可能具有不同的长度。 算法 1 对每个 MHSA 层和头独立地应用。请注意,算法 1 可以有效地实现,无需根据 α t \alpha_t αt 进行 if-then-else 语句,而是像公式(9)中那样将之前的 k i k_i ki v i v_i vi z i z_i zi 乘以 α t \alpha_t αt

在这里插入图片描述

0x3.2 训练

DMC 推断算法在累积和追加token到 KV Cache之间切换。为了赋予 LLM DMC 功能,我们在少量预训练数据上继续对它们进行预训练,逐渐提高压缩率以达到目标。然而,这带来了严峻的挑战。首先,我们选择通过梯度下降和决策变量的连续松弛来进行端到端学习。因此,我们必须定义一个 KV 缓存更新操作,当 0 < α < 1 0 < \alpha < 1 0<α<1 时,导致部分聚合、部分累积的key和value状态。其次,为了避免训练-推断不匹配,我们必须在推断时模拟 DMC 行为,同时跨一系列tokens 并行训练:因此, K K K V V V 的长度在训练期间不会通过压缩减少;相反,keys 和 values 的中间状态都显式地保存在内存中,并且一个辅助的(逐渐离散化的)掩码调节 query 和 key 之间的交互。

离散决策的梯度估计
推理时是累积还是追加的决策是离散的;然而,在训练中将 s i g m o i d ( k [ 0 ] ) sigmoid(k[0]) sigmoid(k[0])四舍五入到最接近的整数会导致非可微分操作,梯度为零。因此,我们在训练过程中采用决策变量的随机重参数化。

α t ∼ Gumbel-sigmoid ( k [ 0 ] − c , τ ) ∈ [ 0 , 1 ] , \alpha_t \sim \text{Gumbel-sigmoid}(k[0] - c, \tau) \in [0, 1], αtGumbel-sigmoid(k[0]c,τ)[0,1],

其中, τ \tau τ 是温度( 低温度将 α t 锐化为几乎离散的值,这准确地模仿了推理行为。 低温度将\alpha_t 锐化为几乎离散的值,这准确地模仿了推理行为。 低温度将αt锐化为几乎离散的值,这准确地模仿了推理行为。), c c c 是一个常数,减去它是为了使在训练步骤0时,每个 α ≈ 0 \alpha≈0 α0。同样地,我们将 c c c加到重要性变量 ω t ω_t ωt中,以便在开始时每个 ω t ≈ 1 ω_t≈1 ωt1。这确保了DMC最初不执行压缩,且训练表现如同普通的Transformer。

部分累积
随着我们放宽离散决策,我们现在必须定义一个机制来更新KV缓存,使其将算法1推广到连续的 α \alpha α。因此,我们定义部分累积状态对于 α ∈ [ 0 , 1 ] α \in [0, 1] α[0,1]如下:

在这里插入图片描述

注意,当 α \alpha α ∈ {0, 1}时,方程(9)会退化为算法1。

中间压缩步骤

除了方程(9)中显示的key和value的计算,Forward Pass其余部分可以对序列中的所有tokens并行执行。然而,这在训练和评估之间造成了不匹配,因为在训练期间,所有key和value的中间状态在自注意力机制中都是可访问的。

在这里插入图片描述

为了说明这个问题,请考虑上图2中DMC推理期间的KV Cache示例,决策分数序列为 α 1 : 5 = ( 1 , 1 , 0 , 1 , 0 ) \alpha_{1:5} = (1, 1, 0, 1, 0) α1:5=(1,1,0,1,0)(为简明起见,已省略重要性分数 ω \omega ω)。KV Cache的最后一个元素在每个时间步都会发生变化。为了在训练期间正确模拟推理时间KV Cache的演变,保留所有展开的中间KV Cache项。

在这里插入图片描述

论文使用基于 α \alpha α值序列的加性掩码来修改方程(4)中的注意力分数 a i j h a^h_{ij} aijh,如上图3所示。

在这里插入图片描述

在训练期间, α \alpha α值 1) 自然地收敛到0或1,因为模型努力满足语言建模标准并减少不确定性;2)通过Gumbel噪声和低温设置被故意推向几乎离散的状态。这样的 α \alpha α值二值化显著影响了注意力分数——它加强了query与每个key-value段最后元素的交互,并削弱了与中间元素的交互,中间元素在推理期间被丢弃。事实上,当 α ∈ { 0 , 1 } \alpha \in \{0, 1\} α{0,1}时,矩阵充满了0或 − ∞ -\infty 值,并且完全对应于推理时间的query到key的注意力模式。

训练目标

模型被激励将KV Cache压缩到某个CR,从而增加预测的 α \alpha α值。我们不是为每个追加或累积决策 α \alpha α匹配期望的比率,而是计算一个全局的单边损失,作为所有决策之和与在期望的压缩比(CR)下所有层 l l l、头 h h h和时间步 t t t的KV tokens的期望总和之间的差值,归一化为 ( n l n h n ) (n_l n_h n) (nlnhn)

ℓ C R = 1 n l n h n ∗ max ⁡ ( 0 , ∑ l = 1 n l ∑ h = 1 n h ∑ t = 1 n ( 1 − α l h t ) − n l n h n C R ) . ( 10 ) \ell_{CR} = \frac{1}{n_l n_h n} * \max \left(0, \sum_{l=1}^{n_l} \sum_{h=1}^{n_h} \sum_{t=1}^{n} (1 - \alpha_{lht}) - \frac{n_l n_h n}{CR} \right). \quad (10) CR=nlnhn1max(0,l=1nlh=1nht=1n(1αlht)CRnlnhn).(10)

它被添加到语言建模损失项 ℓ L M = − ∑ t = 1 n log ⁡ p θ ( x t ∣ x < t ) \ell_{LM} = - \sum_{t=1}^{n} \log p_\theta (x_t \mid x_{<t}) LM=t=1nlogpθ(xtx<t)中,最终的训练目标是:

arg ⁡ min ⁡ θ ℓ L M + ℓ C R . ( 11 ) \arg \min_\theta \ell_{LM} + \ell_{CR}. \quad (11) argθminLM+CR.(11)
重要的是,训练过程设计为缓慢提高目标CR并在过程中获取可随时使用的DMC检查点。这是可能的,因为所有超参数,如Gumbel-sigmoid采样温度和学习率,都不会衰减并在整个训练过程中保持不变。这种DMC属性的一个实际应用案例是,在一次运行中生成具有不同CR的一系列DMC检查点,然后选择一个具有期望的效率-性能权衡的检查点。

我个人理解是在计算attenton score矩阵的时候,对于标准的attention来说只有当矩阵中的 q i ∗ k j q_i * k_j qikj接近0的时候才能说明i和j这两个token是相互注意的,也就是有强烈的语义关系。但是现在新插入了一项 l o g ( 1 − α t ) log(1-\alpha_t) log(1αt)进来,并且是求和的方式(见下面的附录H),根据语言模型的特性,这个 α t \alpha_t αt只能尽量往0和1靠,对应的语义关系就是强烈相关和完全不相关,否则会影响最后模型的性能。这样就做到了paper中描述的只和每个key-value段最后元素的交互,并削弱了与中间元素的交互,中间元素在推理期间被丢弃。这样在推理的时候就可以压缩了。

在这里插入图片描述

0x3.3 实际考虑

DMC允许每个头学习自定义压缩,这导致KV缓存序列在各个头之间具有可变长度。这给在 n n n维张量中高效存储这些序列时带来了困难,因为在自回归生成期间,由于DMC的自适应压缩率,每个头的KV Cache将通过不同数量的token进行扩展。然而,使用PagedAttention可以轻松地将这些序列存储在内存中,而几乎没有开销,其中为每个头单独按需分配新page。在第5.2节中,我们展示了基于FlashAttention和PagedAttention的实现测得的延迟和吞吐量。

也就是说,DMC和FlashAttention和vLLM相兼容的,这也让他有一定的实用性可能。

0x4. 总结

读到这里对idea的把握就差不多了,实验部分就不说了。Paper的附录里面还提到一个limit,DMC这种方法针对已经训练好的model通过continue train来应用DMC,如果from scratch训练模型会崩,所以这个应该是相比于MLA的劣势,因为对于很大的model来说不是每个人都有资源去continue train一下model的。不过这个paper的思路还是蛮有意思的,所以就在这里给大家分享一下它的Idea。谢谢大家。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/25049.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DS:树与二叉树的相关概念

欢迎来到Harper.Lee的学习世界&#xff01;博主主页传送门&#xff1a;Harper.Lee的博客主页想要一起进步的uu可以来后台找我哦&#xff01; 一、树的概念及其结构 1.1 树的概念亲缘关系 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限节点…

汇编:数组-寻址取数据

比例因子寻址&#xff1a; 比例因子寻址&#xff08;也称为比例缩放索引寻址或基址加变址加比例因子寻址&#xff09;是一种复杂的内存寻址方式&#xff0c;常用于数组和指针操作。它允许通过一个基址寄存器、一个变址寄存器和一个比例因子来计算内存地址。 语法 比例因子寻…

经典文献阅读之--Online Monocular Lane Mapping(使用Catmull-Rom样条曲线完成在线单目车道建图)

0. 简介 对于单目摄像头完成SLAM建图这类操作&#xff0c;对于自动驾驶行业非常重要&#xff0c;《Online Monocular Lane Mapping Using Catmull-Rom Spline》介绍了一种仅依靠单个摄像头和里程计生成基于样条的在线单目车道建图方法。我们提出的技术将车道关联过程建模为一个…

Java 习题集

&#x1f496; 单选题 &#x1f496; 填空题 &#x1f496; 判断题 &#x1f496; 程序阅读题 1. 读代码写结果 class A {int m 5;void zengA(int x){m m x;}int jianA(int y){return m - y;} }class B extends A {int m 3;int jianA(int z){return super.jianA(z) m;} …

Java Web学习笔记20——Ajax-Axios

Axios&#xff1a; 介绍&#xff1a;Axios对原生的Ajax进行封装&#xff0c;简化书写&#xff0c;快速开发。 官网&#xff1a;https://www.axios-http.cn Axios 入门&#xff1a; {}是Js的对象。 get的请求参数是在URL后面&#xff1f;和相关参数值。 post的请求参数是在请…

Soildworks学习笔记(二)

放样凸台基体&#xff1a; 自动生成连接两个物体两个面的基体&#xff1a; 2.旋转切除&#xff1a; 3.剪切实体&#xff1a; 4.转换实体引用&#xff1a; 将实体的轮廓线转换至当前草图使其成为当前草图的图元,主要用于在同一平面或另一个坐标中制作草图实体或其尺寸的副本。 …

【深度学习】Transformer分类器,CICIDS2017,入侵检测

文章目录 1 前言2 什么是入侵检测系统&#xff1f;3 为什么选择Transformer&#xff1f;4 数据预处理5 模型架构5.1. 输入嵌入层&#xff08;Input Embedding Layer&#xff09;5.2. 位置编码层&#xff08;Positional Encoding Layer&#xff09;5.3. Transformer编码器层&…

MySQL—多表查询—子查询(介绍)

一、引言 上一篇博客学习完联合查询。 这篇开始&#xff0c;就来到多表查询的最后一种形式语法块——子查询。 &#xff08;1&#xff09;概念 SQL 语句中嵌套 SELECT 语句&#xff0c;那么内部的 select 称为嵌套查询&#xff0c;又称子查询。 表现形式 注意&#xff1a; …

复数的概念

1. 虚数单位&#xff1a;i 引入一个新数 ‘i’&#xff0c;i又叫做虚数单位&#xff0c;并规定&#xff1a; 它的平方等于 -1&#xff0c;即 i -1。实数可以与它进行四则运算&#xff0c;并且原有的加&#xff0c;乘运算律依然成立。 2.定义 复数的定义&#xff1a;形如 a…

CTFHUB-SQL注入-字符型注入

目录 查询数据库名 查询数据库中的表名 查询表中数据 总结 此题目和上一题相似&#xff0c;一个是整数型注入&#xff0c;一个是字符型注入。字符型注入就是注入字符串参数&#xff0c;判断回显是否存在注入漏洞。因为上一题使用手工注入查看题目 flag &#xff0c;这里就不…

GIS数据快捷共享发布工具及操作视频

有网友反映还是不会操作GIS数据快捷共享发布工具&#xff08;建立自己的地图网站&#xff09;&#xff0c;要我录个视频。 好&#xff0c;那就录一个: GIS数据快捷共享发布工具及操作视频 虽然默认例子是二维的&#xff0c;但这个服务器可以为二维、三维系统发布时间服务。都是…

NASA数据集——SARAL 近实时增值业务地球物理数据记录海面高度异常

SARAL Near-Real-Time Value-added Operational Geophysical Data Record Sea Surface Height Anomaly SARAL 近实时增值业务地球物理数据记录海面高度异常 简介 2020 年 3 月 18 日至今 ALTIKA_SARAL_L2_OST_XOGDR 这些数据是近实时&#xff08;NRT&#xff09;&#xff…

SpringCloudAlibaba基础二 Nacos注册中心

一 什么是 Nacos 官方&#xff1a;一个更易于构建云原生应用的动态服务发现(Nacos Discovery )、服务配置(Nacos Config)和服务管理平台。 集 注册中心配置中心服务管理 平台。 Nacos 的关键特性包括: 服务发现和服务健康监测动态配置服务动态 DNS 服务服务及其元数据管理 …

达梦8 探寻达梦排序原理:新排序机制(SORT_FLAG=1)

测试版本&#xff1a;--03134283938-20221019-172201-20018 达梦的排序机制由四个dm.ini参数控制&#xff1a; #maximum sort buffer size in Megabytes &#xff0c;有效值范围&#xff08;1~2048&#xff09; SORT_BUF_SIZE 100 #ma…

mysql数据库打开失败的问题

打不开mysql 1. my.ini未配置路径&#xff1a;找到basedir和datadir&#xff0c;改成如下路径。改完记得去掉井号 &#xff01;&#xff01; 复制路径粘贴&#xff0c;记得去掉井号 &#xff01;&#xff01; 启动&#xff01;方式1 发生系统错误5&#xff1a;没有用管理员身…

Android Media Framework(三)OpenMAX API阅读与分析

这篇文章我们将聚焦Control API的功能与用法&#xff0c;为实现OMX Core、Component打下坚实的基础。 1、OMX_Core.h OMX Core在OpenMAX IL架构中的位置位于IL Client与实际的OMX组件之间&#xff0c;OMX Core提供了两组API给IL Client使用&#xff0c;一组API用于管理OMX组件…

数据库 | 关系数据库设计

第七章 1.简述数据库的设计阶段&#xff1f;&#xff08;简要回答数据库设计步骤&#xff1f;&#xff09;&#xff08;&#xff08;数据库设计有哪几个阶段&#xff1f;&#xff09; 需求分析、概念结构设计、逻辑结构设计、物理结构设计、数据库的实施、数据库的运行和维护…

如何用群晖当异地组网服务器?

在当今信息化时代&#xff0c;远程通信成为了企业和个人之间不可或缺的一部分。特别是对于跨地区的通信需求&#xff0c;一个可靠的异地组网服务器是必不可少的。而群晖&#xff08;Synology&#xff09;作为一款功能强大的网络存储设备&#xff0c;可以被用作办公室或家庭的异…

ssm621大湾区旅游推荐系统的设计与实现+vue【已测试】

前言&#xff1a;&#x1f469;‍&#x1f4bb; 计算机行业的同仁们&#xff0c;大家好&#xff01;作为专注于Java领域多年的开发者&#xff0c;我非常理解实践案例的重要性。以下是一些我认为有助于提升你们技能的资源&#xff1a; &#x1f469;‍&#x1f4bb; SpringBoot…

数染色体 算法 python源码

效果图如下&#xff1a; 原图&#xff1a; 完整代码&#xff1a; import cv2 import numpy as np from skimage import measure import randomimage cv2.imread(113.jpg, cv2.IMREAD_GRAYSCALE)blurred_img cv2.GaussianBlur(image, (5, 5), 0)_, binary_image cv2.thresho…