【计算机视觉(9)】

基于Python的OpenCV基础入门——形态学操作

  • 形态学操作
    • 腐蚀
    • 膨胀
    • 开运算
    • 闭运算
    • 梯度运算
    • 顶帽
    • 黑帽
  • 形态学操作代码实现以及效果图

形态学操作

形态学操作是数字图像处理中的一种方法,用于改变和提取图像中的结构和形状信息。它基于图像的形状和大小特征,通过对图像进行特定的数学运算和变换来实现对图像的分割、腐蚀、膨胀、细化等操作。

腐蚀

腐蚀操作是通过将图像中所有的像素点与结构元素进行逻辑“与”运算,来减小图像中边缘和细节的尺寸。具体而言,对于图像中的每个像素点,如果其邻域内的像素点都是前景(白色),则该像素点保持不变;如果邻域内有任何一个像素点是背景(黑色),则该像素点变为背景。腐蚀操作可以实现图像的缩小、断开连通区域以及去除细小的噪点等效果。
image = cv2.erode(src, kernel, iterations)
参数:
src:原始图像。
kernel:腐蚀使用的核。 相当于一个小区域,在图像上移动,进行腐蚀。
iterations:可选参数,腐蚀操作的迭代次数,默认值为1。

膨胀

膨胀操作是通过将图像中所有的像素点与结构元素进行逻辑“或”运算,来增加图像中边缘和细节的尺寸。具体而言,对于图像中的每个像素点,如果其邻域内的任何一个像素点是前景(白色),则该像素点保持不变;如果邻域内所有像素点都是背景(黑色),则该像素点变为前景。膨胀操作可以实现图像的放大、闭合连通区域以及填充细小的空洞等效果。
image = cv2.dilate(src, kernel, iterations)
参数:
src:原始图像。
kernel:膨胀使用的核。
iterations:可选参数,腐蚀操作的迭代次数,默认值为1。

开运算

开运算是先进行腐蚀操作,再进行膨胀操作的组合操作。开运算可以用于去除图像中的噪点和细小的干扰物,同时保持图像的整体形状和轮廓特征。

闭运算

闭运算是先进行膨胀操作,再进行腐蚀操作的组合操作。闭运算可以用于填充图像中的空洞和连接细小的断开区域,同时保持图像的整体形状和轮廓特征。

梯度运算

梯度运算(Gradient Operation)是图像处理中的一种常用操作,用于检测图像中的边缘。梯度是指图像中像素值变化的快慢程度。在梯度运算中,通常使用Sobel、Prewitt或Laplacian等算子来计算图像中每个像素点的梯度值。

顶帽

顶帽(Top Hat)操作是一种形态学操作,用于突出图像中比周围背景亮的小区域。顶帽操作基于原始图像和经过开操作(Opening Operation)后得到的图像,通过求差运算来突出亮的小区域。

黑帽

黑帽(Black Hat)操作是一种形态学操作,用于突出图像中比周围背景暗的小区域。黑帽操作基于原始图像和经过闭操作(Closing Operation)后得到的图像,通过求差运算来突出暗的小区域。
开运算、闭运算、梯度运算、礼帽和黑帽形态学操作均使用morphologyEx()函数:
image = cv2.morphologyEx(src, op, kernel)
参数:
src:输入图像,通常为二值图像。
op:形态学操作的类型,可以是以下之一:
cv2.MORPH_ERODE:腐蚀。
cv2.MORPH_DILATE:膨胀。
cv2.MORPH_OPEN:开运算(先腐蚀后膨胀)。
cv2.MORPH_CLOSE:闭运算(先膨胀后腐蚀)。
cv2.MORPH_GRADIENT:形态学梯度(膨胀图像与腐蚀图像之差)。
cv2.MORPH_TOPHAT:顶帽(原始图像与开运算结果之差)。
cv2.MORPH_BLACKHAT:黑帽(闭运算结果与原始图像之差)。
kernel:结构元素或核,它决定了形态学操作的性质。通常,这是一个小的矩形、椭圆形或十字形矩阵。

形态学操作代码实现以及效果图

腐蚀操作代码如下:

import cv2                       #导入OpenCV模块    
import matplotlib.pyplot as plt # 导入matplotlib库    
import numpy as np  image = cv2.imread("img/core.jpg") # 导入图片   kernel = np.ones((3, 3), np.uint8) # 指定核的大小为 3*3的值为1的矩阵  
ession_1 = cv2.erode(image, kernel, iterations = 1) # 腐蚀一次  
ession_2 = cv2.erode(image, kernel, iterations = 2) # 腐蚀两次  
ession_3 = cv2.erode(image, kernel, iterations = 3) # 腐蚀三次  titles = ["original", "iterations1", "iterations2", "iterations3"]  
images = [image, ession_1, ession_2, ession_3]  for i in range(4):  plt.subplot(2, 2, i + 1), plt.imshow(images[i], "gray")  plt.title(titles[i])  
plt.show()  

代码实现效果如下:
在这里插入图片描述
膨胀操作代码如下:

import cv2                       #导入OpenCV模块    
import matplotlib.pyplot as plt # 导入matplotlib库    
import numpy as np  image = cv2.imread("img/core.jpg") # 导入图片   kernel = np.ones((3, 3), np.uint8) # 指定核的大小为 3*3的值为1的矩阵  
dilate_1 = cv2.dilate(image, kernel, iterations = 1) # 膨胀一次  
dilate_2 = cv2.dilate(image, kernel, iterations = 2) # 膨胀两次  
dilate_3 = cv2.dilate(image, kernel, iterations = 3) # 膨胀三次  titles = ["original", "iterations1", "iterations2", "iterations3"]  
images = [image, dilate_1, dilate_2, dilate_3]  for i in range(4):  plt.subplot(2, 2, i + 1), plt.imshow(images[i], "gray")  plt.title(titles[i])  
plt.show()

代码实现效果如下:
在这里插入图片描述

开运算,闭运算,梯度运算,顶帽,黑帽操作代码如下:

import cv2                       #导入OpenCV模块    
import matplotlib.pyplot as plt # 导入matplotlib库    
import numpy as np  image = cv2.imread("img/core.jpg") # 导入图片    kernel = np.ones((5, 5), np.uint8) # 指定核的大小为 5*5的值为1的矩阵  
img_open = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)  # 开运算  
img_close = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)  # 闭运算  
img_gradient = cv2.morphologyEx(image, cv2.MORPH_GRADIENT, kernel)  # 梯度运算  
img_tophat = cv2.morphologyEx(image, cv2.MORPH_TOPHAT, kernel)  # 顶帽  
img_blackhat = cv2.morphologyEx(image, cv2.MORPH_BLACKHAT, kernel)  # 黑帽  titles = ["original", "OPEN", "CLOSE", "GRADIENT", "TOPHAT", "BLACKHAT"]  
images = [image, img_open, img_close, img_gradient, img_tophat, img_blackhat]  for i in range(6):  plt.subplot(2, 3, i + 1), plt.imshow(images[i], "gray")  plt.title(titles[i])  
plt.show() 

代码实现效果如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/24752.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于SpringBoot+Vue单位考勤系统设计和实现(源码+LW+调试文档+讲解等)

💗博主介绍:✌全网粉丝1W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟 感兴趣的可以先收藏起来,还…

B3928 [GESP202312 四级] 田忌赛马

[GESP202312 四级] 田忌赛马 题目描述 你要和田忌赛马。你们各自有 N N N 匹马,并且要进行 N N N 轮比赛,每轮比赛,你们都要各派出一匹马决出胜负。 你的马匹的速度分别为 u 1 , u 2 , ⋯ , u n u_1,u_2,\cdots,…

2024上海初中生古诗文大会倒计时4个多月:单选题真题和独家解析

现在距离2024年初中生古诗文大会还有4个多月时间,我们继续来看10道选择题真题和详细解析,以下题目截取自我独家制作的在线真题集,都是来自于历届真题,去重、合并后,每道题都有参考答案和解析。 为帮助孩子自测和练习&…

STM32F103C8移植uCOSIII并以不同周期点亮两个LED灯(HAL库方式)【uCOS】【STM32开发板】【STM32CubeMX】

STM32F103C8移植uC/OSIII并以不同周期点亮两个LED灯(HAL库方式)【uC/OS】【STM32开发板】【STM32CubeMX】 实验说明 将嵌入式操作系统uC/OSIII移植到STM32F103C8上,构建两个任务,两个任务分别以1s和3s周期对LED进行点亮—熄灭的…

在ADG只读备库使用数据泵导出数据

实际场景中存在某些需求,客户害怕在主库使用数据泵导出数据会对主库的运行造成影响,所以要求从备库导出数据。但数据泵无法直接从只读备库进行导出,需要借助一个中间库来实现。 针对在ADG只读备库环境无法使用数据泵进行导出的问题&#xff…

前端渲染大量数据思路【虚拟列表】【异步机制】

当浏览器遇到性能瓶颈导致页面卡顿时,你会怎么处理?如何查找问题的原因? 浏览器本身自带性能检测工具,通常我们分析由脚本导致的页面卡顿会选择 性能(performance) 选项卡,在其中我们可以找到导…

3D Gaussian Splatting for Real-Time Radiance Field Rendering

辐射场方法最近在基于多张照片或视频进行新视角合成方面取得了革命性进展。然而,实现高视觉质量仍然需要耗时且计算成本高的神经网络,而最近的快速方法不可避免地在速度和质量之间进行了权衡。对于无界和完整的场景(而不是孤立的物体&#xf…

【Vue】vuex 的使用 - 创建仓库

通用的地方我们一般会称之为仓库 1.安装 vuex 安装vuex与vue-router类似,vuex是一个独立存在的插件,如果脚手架初始化没有选 vuex,就需要额外安装。 yarn add vuex3 或者 npm i vuex32.新建 store/index.js 专门存放 vuex ​ 为了维护项目…

【排序算法】总结篇

✨✨这些 排序算法都是指的 需要进行比较的排序算法 ✨✨下面都是略微讲解一下思路,如果需要详细了解哪一个排序,点击👉链接即可 ✨✨对于时间、空间复杂度、稳定性,希望你🧑‍🎓能够理解记忆🧑…

如何优化Vue组件的性能和通信效率?

优化Vue组件的性能和通信效率涉及多个方面,包括组件的设计、懒加载、条件渲染、事件通信以及避免不必要的重新渲染等。下面是一些实用的优化策略: 组件懒加载: 使用异步组件加载机制,只有在组件需要显示时才去加载该组件。例如&a…

Science刊发!乌普萨拉大学最新神经形态触觉人造皮肤可快速精准识别物体

当前,人形机器人使用的传统电子皮肤在处理触觉感知信息方面的能力并不强,尤其是在时间信息编码和快速特征提取方面存在一定的局限性。简单来说就是机器人无法完成在接触到物品的瞬间,判断用怎样的力度去对该物品做出反应。尽管多模态大模型和…

顶级域名和二级域名的区别

互联网是一个由无数个网络节点组成的复杂系统,而域名则是这个系统中用于识别和定位这些节点的重要工具。在域名体系中,顶级域名(Top-Level Domain,TLD)和二级域名(Second-Level Domain,SLD)是两个基本的层级概念。本文将探讨这两者…

备战 清华大学 上机编程考试-冲刺前50%,倒数第6天

真题训练: T1:舞蹈团 - 排序滑动窗口 生活在在外星球X上的小Z想要找一些小朋友组成一个舞蹈团,于是他在网上发布了信息,一共有 \(n\) 个人报名面试。面试必须按照报名的顺序依次进行。小Z可以选择在面试完若干小朋友以后,在所有…

手搓文件格式转换

最初目标: 自己搞一个免费的pdf文件转换 根据现有的开源jar 项目实现思路: 1. 项目原因a. 我想转换文件b. wps 文件转换 2. 最初的状态a. jar运行的b. main,输入文件路径c. 一定的编程能力的人才能得 3. 开始构思项目a. 网页版本b. 想着大家一起用 4. …

MyBatis二级缓存开启条件

MyBatis缓存为俩层体系。分为一级缓存和二级缓存。 一级缓存: 一级缓存默认开启,一级缓存的作用域是SqlSession级别的,这意味着当你更换SqlSession之后就不能再利用原来的SqlSession的一级缓存了。不同的SqlSession之间的一级缓存是隔离的。…

Django更改超级用户密码

Django更改超级用户密码 1、打开shell 在工程文件目录下敲入: python manage.py shell再在python交互界面输入: from django.contrib.auth.models import User user User.objects.get(username root) user.set_password(123456) user.save()其中ro…

adb 删除文件或文件夹

1. 通过adb shell 进入终端shell 2. cd sdcard/data //进入系统内指定文件夹 3. ls //列表显示当前文件夹内容 4. remount //挂载 5. rm -r xxx // 删除名字为xxx的文件夹及其里面的所有文件 6. rm xxx // 删除文件xxx 7. rm dir xxx // 删除xxx的文件夹 8. cat 123…

递归【2】(组合回溯(生成括号)、子集回溯(背包问题))

括号对 (组合型回溯) 分解成子问题,每一次添加括号分两步: if左括号小于n,加左括号,然后k(index1), if左括号大于有括号,加右括号,k(index1),然后收尾括号单独考虑,到…

二叉树----7-3 列出叶结点

对于给定的二叉树,本题要求你按从上到下、从左到右的顺序输出其所有叶结点。 输入格式: 首先第一行给出一个正整数 n(≤10),为树中结点总数。树中的结点从 0 到 n−1 编号。随后 n 行,每行给出一个对应结点左右孩子的编号。如果某个孩子不存在,则在对应位置给出 "…

【Ardiuno】实验使用ESP32连接Wifi(图文)

ESP32最为精华和有特色的地方当然是wifi连接,这里我们就写程序实验一下适使用ESP32主板连接wifi,为了简化实验我们这里只做了连接部分,其他实验在后续再继续。 由于本实验只要在串口监视器中查看结果状态即可,因此电路板上无需连…