Tensorflow2.0笔记 - BatchNormalization

        本笔记记录BN层相关的代码。关于BatchNormalization,可以自行百度,或参考这里:

一文读懂Batch Normalization - 知乎神经网络基础系列: 《深度学习中常见激活函数的原理和特点》《过拟合: dropout原理和在模型中的多种应用》深度模型的基础结构是MLP,模型训练和调参的复杂性随着模型深度的增加而加大,这使得算法工程师在业务中…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/594944859#:~:text=Batch,normalization%E7%9A%84%E6%80%9D%E8%B7%AF%E5%BE%88%E7%AE%80%E5%8D%95%EF%BC%8C%E5%AF%B9%E8%BE%93%E5%85%A5%E7%9A%84%E6%95%B0%E6%8D%AE%E5%9C%A8%E6%AF%8F%E4%B8%AA%E7%BB%B4%E5%BA%A6%E4%B8%8A%E8%BF%9B%E8%A1%8C%E6%A0%87%E5%87%86%E5%8C%96%E5%A4%84%E7%90%86%EF%BC%8C%E5%86%8D%E8%BF%9B%E8%A1%8C%E7%BA%BF%E6%80%A7%E5%8F%98%E6%8D%A2%EF%BC%8C%E4%BB%A5%E7%BC%93%E8%A7%A3%E5%9B%A0%E6%A0%87%E5%87%86%E5%8C%96%E5%AF%BC%E8%87%B4%E7%9A%84%E6%95%B0%E6%8D%AE%E8%A1%A8%E5%BE%81%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%8B%E9%99%8D%E3%80%82Batch Normalization(BN)超详细解析_batchnorm在预测阶段需要计算吗-CSDN博客文章浏览阅读3.7w次,点赞109次,收藏458次。单层视角神经网络可以看成是上图形式,对于中间的某一层,其前面的层可以看成是对输入的处理,后面的层可以看成是损失函数。一次反向传播过程会同时更新所有层的权重W1,W2,…,WL,前面层权重的更新会改变当前层输入的分布,而跟据反向传播的计算方式,我们知道,对Wk的更新是在假定其输入不变的情况下进行的。如果假定第k层的输入节点只有2个,对第k层的某个输出节点而言,相当于一个线性模型y=w1x1+w2x..._batchnorm在预测阶段需要计算吗https://blog.csdn.net/weixin_44023658/article/details/105844861        

import os
import time
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics, Inputos.environ['TF_CPP_MIN_LOG_LEVEL']='2'
#tf.random.set_seed(12345)
tf.__version__#下面的x中的数据按照均值是1,标准差为0.5的正态分布排布,通过BatchNormalization进行修正
x = tf.random.normal([2, 4, 4, 3], mean=1., stddev=0.5)
net = layers.BatchNormalization(axis=3)
out = net(x, training=True)print("Variables:\n", net.variables)#设置优化器
optimizer = optimizers.Adam(learning_rate=1e-4)for i in range(100):with tf.GradientTape() as tape:#进行100次BN层前向传播,moving_mean和moving_variance会变化out = net(x, training=True)#自定义损失函数是均值和1的距离loss = tf.reduce_mean(tf.pow(out, 2)) - 1#进行梯度更新, gamma和beta会变化grads = tape.gradient(loss, net.trainable_variables)optimizer.apply_gradients(zip(grads, net.trainable_variables))print("Trained 100 times:\n", net.variables)

运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/2463.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JavaEE多线程】线程中断 interrupt()

系列文章目录 🌈座右铭🌈:人的一生这么长、你凭什么用短短的几年去衡量自己的一生! 💕个人主页:清灵白羽 漾情天殇_计算机底层原理,深度解析C,自顶向下看Java-CSDN博客 ❤️相关文章❤️:清灵白羽 漾情天…

StarRocks最佳实践经验

目录 一、部署 1.1 容量规划 1.2 基础环境配置 1.3 机器配置 1.3.1 FE节点 1.3.2 BE节点 1.4 部署方案 二、建模 2.1 建表规范 2.2 模型选择 2.3 排序列和前缀索引选择 2.4 分区选择 2.5 分桶选择 2.6 字段类型 2.7 索引选择 2.7.1 Bitmap索引 2.7.2 Bloom fi…

debian8安装后无法使用博通无线网卡BCM43224,提示缺少固件

装完debian8后发现主机自带的无线网卡不能使用,并且在安装系统过程中会有提示: 您的一些硬件需要非自由固件文件才能运转。固件可以从移动介质加载。 缺失的固件文件是:brcm/brcm43xx-0.fw我没有理会,装完后发现无线网卡不能用 需要安装 broadcom-wl 查看网卡芯片型号 …

从 Newtonsoft.Json 迁移到 System.Text.Json

一.写在前面# System.Text.Json 是 .NET Core 3 及以上版本内置的 Json 序列化组件,刚推出的时候经常看到踩各种坑的吐槽,现在经过几个版本的迭代优化,提升了易用性,修复了各种问题,是时候考虑使用 System.Text.Json …

笔记本电脑耗电和发热比较厉害怎么处理

工作中会遇到有同事反馈笔记本电脑耗电和发热比较厉害,主要检查以下几个地方 1、CPU频率 很多人觉得是cpu使用率高就代表电脑跑得快,发热量就大,其实不是的,主要是看的cpu频率,频率越高,电脑发热量越大。如…

剑指offer--最小的k个数

题目描述🍗 输入n个整数,找出其中最小的k个数。例如,输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,…

(N-151)基于微信小程序校园学生活动管理平台

开发工具:IDEA、微信小程序 服务器:Tomcat9.0, jdk1.8 项目构建:maven 数据库:mysql5.7 前端技术:vue、uniapp 服务端技术:springbootmybatisplus 本系统分微信小程序和管理后台两部分&am…

探索开源的容器引擎--------------Docker容器操作

目录 一、Docker 容器操作 1.1容器创建 1.2查看容器的运行状态 1.3启动容器 1.4创建并启动容器 1.4.1当利用 docker run 来创建容器时, Docker 在后台的标准运行过程是: 1.4.2在后台持续运行 docker run 创建的容器 1.4.3创建容器并持续运行容器…

免费开源线上社交交友婚恋系统平台 可打包小程序 支持二开 源码交付!

婚姻是人类社会中最重要的关系之一,它对个人和家庭都有着深远的影响。然而,在现代社会的快节奏生活中,找到真爱变得越来越困难。在这个时候,婚恋产品应运而生,为人们提供了寻找真爱的新途径。 1.拓宽人际交流圈子 现代…

Swift中与WebView的交互

在Swift中,可以使用WKWebView来实现与WebView的交互。WKWebView是iOS 8及以后版本中新增的Web视图控件,它提供了一种现代化的方式来加载和显示Web内容,并且支持与JavaScript的交互。 以下是一些常见的与WebView的交互方式: 1.加…

手撕netty源码(一)- NioEventLoopGroup

文章目录 前言一、NIO 与 netty二、NioEventLoopGroup 对象的创建过程2.1 创建流程图 前言 本文是手撕netty源码系列的开篇文章,会先介绍一下netty对NIO关键代码的封装位置,主要介绍 NioEventLoopGroup 对象的创建过程,看看new一个对象可以做…

【国产替代】航空电子通信总线航空电子通信总线产品为MIL-STD-1553和ARINC 429等协议提供原生支持

航空电子通信总线 航空电子通信总线产品为MIL-STD-1553和ARINC 429等协议提供原生支持。这些产品用于进行航空电子应用所需的开发、生产和系统测试。 PXIe,2通道PXI ARINC-664接口模块 AIM ARINC-664具有板载处理器,可自动处理所有与协议相关的活动&…

界面组件DevExpress Blazor UI v23.2 - 支持.NET 8、全新的项目模版

DevExpress Blazor UI组件使用了C#为Blazor Server和Blazor WebAssembly创建高影响力的用户体验,这个UI自建库提供了一套全面的原生Blazor UI组件(包括Pivot Grid、调度程序、图表、数据编辑器和报表等)。 DevExpress Blazor控件目前已经升级…

(五)AB测试及两个案例 学习简要笔记 #统计学 #CDA学习打卡

目录 一. AB测试简介 1)假设检验的一般步骤 2)基于假设检验的AB测试步骤 二. 案例1:使用基于均值的假设检验进行AB测试 1)原始数据 2)提出原假设H0和备择假设H1 3)使用均值之差的t检验,计…

leetcode929-Unique Email Addresses

题目 每个 有效电子邮件地址 都由一个 本地名 和一个 域名 组成,以 ‘’ 符号分隔。除小写字母之外,电子邮件地址还可以含有一个或多个 ‘.’ 或 ‘’ 。 例如,在 aliceleetcode.com中, alice 是 本地名 ,而 leetcode…

AI视频改字个性化祝福豪车装X系统uniapp前端开源源码下载

装X系统源码简介 创意无限!AI视频改字祝福,豪车装X系统源码开源,打造个性化祝福视频不再难! 想要为你的朋友或家人送上一份特别的祝福,让他们感受到你的真诚与关怀吗?现在, 通过开源的AI视频…

【深度学习】yolo-World,数据标注,zeroshot,目标检测

仓库:https://github.com/AILab-CVC/YOLO-World 下载权重: 仓库下载和环境设置 下载仓库:使用以下命令从 GitHub 上克隆仓库: git clone --recursive https://github.com/AILab-CVC/YOLO-World.git创建并激活环境&#xff1a…

scipy csr_matrix: understand indptr

See https://stackoverflow.com/questions/52299420/scipy-csr-matrix-understand-indptr

架构师核心-云计算云上实战(云计算基础、云服务器ECS、云设施实战、云上高并发Web架构)

文章目录 云计算基础1. 概念1. 云平台优势2. 公有云3. 私有云4. IaaS、PaaS、SaaS 2. 云设施1. 概览2. 核心组件 云服务器ECS1. ECS介绍1. 简介2. 组件3. 概念4. 图解5. 规格6. 场景 2. ECS服务器开通1. 开通服务器2. 连接服务器 3. 云部署准备1. 1Panel介绍2. 安装1Panel3.安全…

Qt tcp通信(客户端+服务器一对一)

学习自《Qt5.9 C开发指南》 服务器端: QTcpServer *tcpServer; //TCP服务器 tcpServernew QTcpServer(this); connect(tcpServer,SIGNAL(newConnection()),this,SLOT(onNewConnection())); 当有新的客户端接入时,QTcpServer内部的incomingConnectio…