《Effective C++》《资源管理——14、在资源管理类中小心copying行为》

文章目录

  • 1、Terms14:Think carefully about copying behavior in resource-managing classes
    • 方法一:禁止复制
    • 方法二:对底层资源使出“引用计数法”
    • 方法三:复制底部资源
    • 方法四:转移底部资源的拥有权
  • 2、总结
  • 3、参考

1、Terms14:Think carefully about copying behavior in resource-managing classes

条款13,引入了RAII原则,以此作为资源管理的一个原则。对于heap_based的资源,用auto_ptr,tr1::shared_ptr比较合适。但是对于非heap_based的资源,可能需要建立自己的资源管理类。
举一个栗子:

 #include <iostream>using namespace std;class Lock
{
public:explicit Lock(int* pm): m_p(pm){lock(m_p);}~Lock(){unlock(m_p);}private:int *m_p;void lock(int* pm){cout << "Address = " << pm << " is locked" << endl;}void unlock(int *pm){cout << "Address = " << pm << " is unlocked" << endl;}
};int main()
{int m = 5;Lock m1(&m);
}

这个是模仿原书中的例子,做的一个加锁和解锁的操作。
运行结果如下:

Address = 0x7ffc0820f6bc is locked
Address = 0x7ffc0820f6bc is unlocked...Program finished with exit code 0
Press ENTER to exit console.

这符合预期,当m1获得资源的时候,将之锁住,而m1生命周期结束后,也将资源的锁释放。
注意到Lock类中有一个指针成员,那么如果使用默认的析构函数、拷贝构造函数和赋值运算符,很可能会有严重的bug。
我们不妨在main函数中添加一句话,变成下面这样:

 int main()
{int m = 5;     Lock m1(&m);Lock m2(m1);
}

再次运行,可以看到结果:

Address = 0x7fffa98a14d4 is locked
Address = 0x7fffa98a14d4 is unlocked
Address = 0x7fffa98a14d4 is unlocked...Program finished with exit code 0
Press ENTER to exit console.

可见,锁被释放了两次,这就出问题了。原因是析构函数被调用了两次,在main()函数中生成了两个Lock对象,分别是m1和m2,Lock m2(m1)这句话使得m2.m_p = m1.m_p,这样这两个指针就指向了同一块资源。根据后生成的对象先析构的原则,所以m2先被析构,调用他的析构函数,释放资源锁,但释放的消息并没有通知到m1,所以m1在随后析构函数中,也会释放资源锁。
如果这里的释放不是简单的一句输出,而是真的对内存进行操作的话,程序就会崩溃。
归根到底,是程序使用了默认了拷贝构造函数造成的(当然,如果使用赋值运算的话,也会出现相同的bug),那么解决方案就是围绕如何正确摆平这个拷贝构造函数(和赋值运算符)。

方法一:禁止复制

很简单直观,就是干脆不让程序员使用类似于Lock m2(m1)这样的语句,一用就报编译错。这可以通过自己写一个私有的拷贝构造函数和赋值运算符的声明来解决。注意这里只要写声明就行了。
举个例子:

class Lock
{public:explicit Lock(int* pm): m_p(pm){lock(m_p);}~Lock(){unlock(m_p);}private:int *m_p;void lock(int* pm){cout << "Address = " << pm << " is locked" << endl;}void unlock(int *pm){cout << "Address = " << pm << " is unlocked" << endl;}private:Lock(const Lock&);Lock& operator= (const Lock&);
};

方法二:对底层资源使出“引用计数法”

就是使用shared_ptr来进行资源管理(见条款13),但还有一个问题,我想在生命周期结束后调用Unlock的方法,其实shared_ptr里面的删除器可以帮到我们。
举个栗子:

class Lock{public:explicit Lock(int *pm): m_p(pm, unlock){}private:shared_ptr<int> m_p;}

这样在Lock的对象的生命周期结束后,就可以自动调用unlock了。
在条款十三的基础上,我改了一下自定义的shared_ptr,使之也支持删除器的操作了,
完整代码如下:

#ifndef MY_SHARED_PTR_H
#define MY_SHARED_PTR_H#include <iostream>
using namespace std;typedef void (*FP)();    template <class T>
class MySharedPtr
{private:T *ptr;size_t *count;FP Del; // 声明一个删除器static void swap(MySharedPtr& obj1, MySharedPtr& obj2){std::swap(obj1.ptr, obj2.ptr);std::swap(obj1.count, obj2.count);std::swap(obj1.Del, obj2.Del);}public:MySharedPtr(T* p = NULL): ptr(p), count(new size_t(1)),Del(NULL){}// 添加带删除器的构造函数MySharedPtr(T* p, FP fun): ptr(p), count(new size_t(1)), Del(fun){}MySharedPtr(MySharedPtr& p): ptr(p.ptr), count(p.count), Del(p.Del){++ *p.count;}MySharedPtr& operator= (MySharedPtr& p){if(this != &p && (*this).ptr != p.ptr){MySharedPtr temp(p);swap(*this, temp);}return *this;}~MySharedPtr(){if(Del != NULL){Del();}    reset();}T& operator* () const{return *ptr;}T* operator-> () const {return ptr;}T* get() const {return ptr;}void reset(){-- *count;if(*count == 0){delete ptr;ptr = 0;delete count;count = 0;//cout << "真正删除" << endl;}}bool unique() const{return *count == 1;}size_t use_count() const {return *count;}friend ostream& operator<< (ostream& out, const MySharedPtr<T>& obj){out << *obj.ptr;return out;}};#endif /* MY_SHARED_PTR_H */

方法三:复制底部资源

就是将原来的浅拷贝转换成深拷贝,需要自己显示定义拷贝构造函数和赋值运算符。这个也在之前的条款说过了,放到这里,其实就是在拷贝的时候对锁的计数次数进行+1,析构函数里就是对锁的计数次数进行-1,如果减到0就去unlock(其实思想还是类似于shared_ptr进行资源管理)

方法四:转移底部资源的拥有权

转移底部资源的控制权,这就是auto_ptr干的活了,在第二个方法中把shared_ptr换成auto_ptr就行了。

2、总结

天堂有路你不走,地狱无门你自来。

3、参考

3.1 《Effective C++》
3.2 读书笔记_Effective_C++_条款十四:在资源管理类中小心copying行为

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/21062.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

7-18 对象关系映射(orm_name)---PTA实验C++

一、题目描述 一开始看到对象关系映射&#xff0c;其实我是拒绝的。这三个词凑一块&#xff0c;能是给C初学者的题吗&#xff1f; 再仔细读需求&#xff0c;才发现在课设项目已经用过这功能。Object Relational Mapping&#xff08;ORM&#xff09;就是面向对象&#xff08;O…

计算机基础之:LSM树

使用过hbase、cassandra之类nosql数据库的小伙伴对LSM树结构应该有所耳闻&#xff0c;那么这种数据结构有哪些优劣势呢&#xff0c;本文做下简单介绍。 LSM&#xff08;全称&#xff1a;Log-Structured Merge Tree&#xff09;是一种广泛应用于现代数据库和存储系统的数据结构…

《平渊》· 柒 —— 大道至简?真传一句话,假传万卷书!

《平渊》 柒 "真传一句话, 假传万卷书" 对于 "大道至简"&#xff0c;不少专家可能会说出一大堆乱七八糟的名词, 比如这样&#xff1a; 所谓 "大道" 即支撑天地运转的 "系统自动力"&#xff0c;更具体地来说&#xff0c;即是天地人以…

快手游戏《无尽梦回》官宣开测:热血动作肉鸽来袭

易采游戏网最新消息&#xff1a;5月30日11:00&#xff0c;快手自研的梦境主题动作冒险手游《无尽梦回》正式宣布开启测试。此次测试名为“肉鸽进化实验”&#xff0c;旨在测试多角色技能交会的玩法。游戏将开放32人同局竞技&#xff0c;让玩家在激烈的战斗中角逐出唯一的胜利者…

HTML如何让文字底部线条不紧贴在文字下面(既在内容下方又超出内容区域)

hello&#xff0c;大家好&#xff0c;星途星途今天给大家带来的内容是如何让文字底部线条不紧贴在文字下面。 话不多说&#xff0c;先上效果图 简单来说就是padding和margin的区别。 在网页设计中&#xff0c;有时我们想要给某个元素添加一个装饰性的线条&#xff0c;比如底部…

过滤器、监听器、拦截器的区别

过滤器、监听器、拦截器的区别 过滤器&#xff08;filter&#xff09;、监听器&#xff08;Listener&#xff09;是JavaWeb的三大组件。而拦截器&#xff08;Interceptor&#xff09;是Spring框架中的。 我们主要是要分清除过滤器和拦截器的区别&#xff1a; 实现原理&#…

overleaf 写参考文献引用

目录 1、 新建.bib 文件 2、导入引用 3、在文档中引用参考文献 4、生成参考文献列表 1、 新建.bib 文件 在Overleaf项目中&#xff0c;你可以选择导入现有的 .bib 文件或在项目中创建一个新的 .bib 文件来管理你的参考文献。 导入.bib 文件&#xff1a; 在项目文件树中点击…

11. RBAC权限管理从零到一实现(二)

前端页面已提交至git https://github.com/SJshenjian/cloud-web默认用户名密码admin 1

MySql 数据类型选择与优化

选择优化的数据类型 更小的通常更好 一般情况下尽量使用可以正确存储数据的最小类型。更小的数据类型通常更快&#xff0c;因为它们占用更少的磁盘&#xff0c;内存和CPU缓存&#xff0c;并且处理时需要的CPU周期也更少。但也要确保没有低估需要存储值的范围。 简单就好 简单的…

【自然语言处理】【Scaling Law】Observational Scaling Laws:跨不同模型构建Scaling Law

相关博客 【自然语言处理】【Scaling Law】Observational Scaling Laws&#xff1a;跨不同模型构建Scaling Law 【自然语言处理】【Scaling Law】语言模型物理学 第3.3部分&#xff1a;知识容量Scaling Laws 【自然语言处理】Transformer中的一种线性特征 【自然语言处理】【大…

jmeter性能优化之tomcat配置与基础调优

一、 修改tomcat初始和最大堆内存 进入到/usr/local/tomcat7-8083/bin目录下&#xff0c;编辑catalina.sh文件&#xff0c;&#xff0c;默认堆内存是600m&#xff0c;初始堆内存和最大堆内存保持一致&#xff0c; 可以更改到本机内存的70%&#xff0c;对于Linux系统&#xff0…

conda创建虚拟环境并激活

1 conda activate base 2 conda creat -n aaa python** 3 conda activate aaa 4 interpreter里面去选择刚搞好的编译器 ...../conda.exe

【SpringBoot】四种读取 Spring Boot 项目中 jar 包中的 resources 目录下的文件

本文摘要&#xff1a;四种读取 Spring Boot 项目中 jar 包中的 resources 目录下的文件 &#x1f60e; 作者介绍&#xff1a;我是程序员洲洲&#xff0c;一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。公粽号&#xf…

【操作系统】Windows平台捕获崩溃现场底层原理,附代码亲测MiniDumpWriteDump

MiniDumpWriteDump 是一个Windows API函数&#xff0c;它属于DbgHelp.dll库&#xff0c;用于生成程序崩溃时的内存转储文件&#xff08;MiniDump&#xff09;。这个函数是Windows平台下用于捕获程序崩溃时的内存状态的常用方法之一。以下是MiniDumpWriteDump函数的原理和工作流…

【C++】ios::sync_with_stdio(false) 与 cin.tie(nullptr) 加速 IO

一、前言 之前写题遇到大数据量&#xff08;cin、cout 数据量级达到 1e5、1e6 &#xff09;&#xff0c;因为考虑 IO 性能报错 TLE&#xff0c;故选择 scanf、printf 替代 cin、cout&#xff0c;以解决问题。一直以来没有深入研究其中原因&#xff0c;只知关键词——同步&…

设计模式(十三)行为型模式---命令模式

文章目录 命令模式简介结构UML图具体实现UML图代码实现 命令模式简介 命令模式&#xff08;command pattern&#xff09;也叫动作模式或者事务模式。它是将请求&#xff08;命令&#xff09;封装成对象&#xff0c;使得可以用不同的请求对客户端进行参数化&#xff0c;具体的请…

MD中 面料的物理属性参数

该图片是Marvelous Designer软件中"Fabric Physical Properties"(面料物理属性)面板的截图,用于调整面料在弯曲、折叠时的硬度(Buckling Stiffness)。 目标部分解释了调整Buckling Stiffness的作用:通过调整该百分比值来决定面料角落处的硬度。进入80%的Buckling St…

笔记-anaconda配置Python环境

查看环境 conda env list 创建python name环境,python版本为3.9&#xff1a; conda create -n name python3.9 激活&#xff1a; conda activate name 去掉激活&#xff1a; conda deactivate name 进入pandas目录&#xff1a; cd D:\学习\pyton\antpy代码\ant-learn-…

NXP RT1060学习总结 - CANFD功能

1、RT1060-CAN FD功能简介 这里使用RT1060系列的1064芯片进行开发&#xff0c;测试板是官方提供的开发板&#xff1b;RT1060系列支持3路CAN功能&#xff0c;CAN1和CAN2只能最为普通的CAN外设&#xff0c;支持CAN2.0&#xff0c;而CAN3支持CAN-FD功能&#xff1b;CAN-FD功能这里…

【LeetCode 77. 组合】

1. 题目 2. 分析 本题有个难点在于如何保存深搜得到的结果&#xff1f;总结了一下&#xff0c;深搜处理的代码&#xff0c;关于返回值有三大类。 第一类&#xff1a;层层传递&#xff0c;将最深层的结果传上来&#xff1b;这类题有&#xff1a;【反转链表】 第二类&#xff1…