LangChain学习之prompt格式化与解析器使用

1. 学习背景

在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。视频地址:基于LangChain的大语言模型应用开发+构建和评估高

2. 先准备尝试调用OpenAI API

本实验基于jupyternotebook进行。

2.1先安装openai包、langchain包

!pip install openai
!pip install langchain

2.2 尝试调用openai包

import openai# 此处需要提前准备好可使用的openai KEY
openai.api_key = "XXXX"
openai.base_url = "XXXX"def get_completion(prompt, model = "gpt-3.5-turbo"):messages = [{"role": "user", "content": prompt}]response = openai.chat.completions.create(model = model,messages = messages,temperature = 0,)return response.choices[0].message.content
get_completion("What is 1+1?")

输出结果:

'1 + 1 equals 2.'

3.尝试用API解决邮件对话问题

3.1 邮件内容和风格

customer_email = """
Arrr, I be fuming that me blender lid \
flew off and splattered me kitchen walls \
with smoothie! And to make matters worse,\
the warranty don't cover the cost of \
cleaning up me kitchen. I need yer help \
right now, matey!
"""style = """American English \
in a calm and respectful tone
"""

3.2 构造成prompt

prompt = f"""Translate the text \
that is delimited by triple backticks \
into a style that is {style}. 
text: ```{customer_email}```
"""
prompt

输出如下:

"Translate the text that is delimited by triple backticks into a style that is American English in a calm and respectful tone\n. \ntext: ```\nArrr, I be fuming that me blender lid flew off and splattered me kitchen walls with smoothie! And to make matters worse,the warranty don't cover the cost of cleaning up me kitchen. I need yer help right now, matey!\n```\n"

3.3 使用上述prompt得到答案

response = get_completion(prompt)
response

输出如下:

'I must express my frustration that my blender lid unexpectedly came off and caused my kitchen walls to be covered in smoothie splatters! And unfortunately, the warranty does not cover the cleaning costs of my kitchen. I kindly request your immediate assistance, my friend.'

4. 尝试用langchain解决

4.1 用langchain调用API

from langchain.chat_models import ChatOpenAI
chat = ChatOpenAI(api_key = "XXXX",base_url = "XXXX",temperature=0.0)
print(chat)

输出如下:

ChatOpenAI(client=<openai.resources.chat.completions.Completions object at 0x7f362ab4f340>, 
async_client=<openai.resources.chat.completions.AsyncCompletions object at 0x7f362aba9d80>, 
temperature=0.0, openai_api_key='sk-gGSeHiJn09Ydl6Q1655eCf128b3a42XXXXXXXXXXXXXX', 
openai_api_base='XXXX', openai_proxy='')

4.2 构造prompt模板

注意和3.2的区别,一个用了f"“”“”“,一个直接”“”“”"。

template_string = """Translate the text \
that is delimited by triple backticks \
into a style that is {style}. \
text: ```{text}```
"""customer_style = """American English in a calm and respectful tone"""customer_email = """
Arrr, I be fuming that me blender lid \
flew off and splattered me kitchen walls \
with smoothie! And to make matters worse, \
the warranty don't cover the cost of \
cleaning up me kitchen. I need yer help \
right now, matey!
"""

4.3 调用ChatPromptTemplate

from langchain.prompts import ChatPromptTemplate
# 将构造的prompt模板化
prompt_template = ChatPromptTemplate.from_template(template_string)
# 模板中的占位符填充的参数
customer_messages = prompt_template.format_messages(style = customer_style,text = customer_email
)
print(type(customer_messages))
print(customer_messages[0])

输出如下:

<class 'list'>
content="Translate the text that is delimited by triple backticks into a style that is American English in a calm and respectful tone\n. text: ```\nArrr, I be fuming that me blender lid flew off and splattered me kitchen walls with smoothie! And to make matters worse, the warranty don't cover the cost of cleaning up me kitchen. I need yer help right now, matey!\n```\n"

4.4 使用LLM解决问题

# Call the LLM to translate to the style of the customer message
customer_response = chat(customer_messages)
print(customer_response.content)

输出如下:

Oh man, I 'm really frustrated that my blender lid flew off and made a mess of my kitchen walls with smoothie! And on top of that, the warranty doesn't cover the cost of cleaning up my kitchen. I could really use your help right now, buddy!

5. 调用langchain对邮件回复

5.1定义回复的prompt

service_reply = """Hey there customer, \
the warranty does not cover \
cleaning expenses for your kitchen \
because it's your fault that \
you misused your blender \
by forgetting to put the lid on before \
starting the blender. \
Tough luck! See ya!
"""service_style_pirate = """\
a polite tone \
that speaks in English Pirate\
"""# 继续使用前面定义的prompt_template,占位符用参数填充
service_messages = prompt_template.format_messages(style = service_style_pirate,text = service_reply)print(service_messages[0].content)

输出如下:

Translate the text that is delimited by triple backticks into a style that is a polite tone that speaks in English Pirate. 
text: ```
Hey there customer, the warranty does not cover cleaning expenses for your kitchen because it's your fault that you misused your blender by forgetting to put the lid on before starting the blender. Tough luck! See ya!```

5.2 使用LLM解决问题

service_response = chat(service_messages)
print(service_response.content)

输出如下:

Ahoy there, me heartie! Unfortunately, the warranty be not coverin' the cost of cleanin' yer kitchen, as tis yer own fault for misusin' yer blender by forgettin' to put on the lid afore startin' the blendin'. Aye, 'tis a tough break indeed! Fare thee well, matey!

至此我们就完成了使用langchain去实现prompt的构造、转换和调用。

6. 用langchain转化回答为JSON格式

6.1 构造模板

# 顾客对产品的评论
customer_review = """\
This leaf blower is pretty amazing.  It has four settings:\
candle blower, gentle breeze, windy city, and tornado. \
It arrived in two days, just in time for my wife's \
anniversary present. \
I think my wife liked it so much she was speechless. \
So far I've been the only one using it, and I've been \
using it every other morning to clear the leaves on our lawn. \
It's slightly more expensive than the other leaf blowers \
out there, but I think it's worth it for the extra features.
"""# 顾客意见形成模板
review_template = """\
For the following text, extract the following information:gift: Was the item purchased as a gift for someone else? \
Answer True if yes, False if not or unknown.delivery_days: How many days did it take for the product \
to arrive? If this information is not found, output -1.price_value: Extract any sentences about the value or price,\
and output them as a comma separated Python list.Format the output as JSON with the following keys:
gift
delivery_days
price_valuetext: {text}
"""from langchain.prompts import ChatPromptTemplate
# 构造模板,占位符信息用prompt填充
prompt_template = ChatPromptTemplate.from_template(review_template)
messages = prompt_template.format_messages(text=customer_review)
# 调用LLM,输入为prompt
response = chat(messages)
print(response.content)

输出如下:

{"gift": true,"delivery_days": 2,"price_value": "It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features."
}

6.2 构造合适的prompt

print(type(response.content))

输出如下:

str

可以看到输出内容是字符串类型的,为了方便处理数据,我们需要的是JSON格式,因此还需要进行转化。

from langchain.output_parsers import ResponseSchema
from langchain.output_parsers import StructuredOutputParsergift_schema = ResponseSchema(name="gift",  description="Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown.")
delivery_days_schema = ResponseSchema(name="delivery_days", description="How many days did it take for the product to arrive? If this information \is not found, output -1.")
price_value_schema = ResponseSchema(name="price_value", description="Extract any sentences about the value or price, and output them as a comma \separated Python list.")response_schemas = [gift_schema, delivery_days_schema,price_value_schema]
# 构造转换器
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
format_instructions = output_parser.get_format_instructions()
print(format_instructions)

输出如下:

The output should be a markdown code snippet formatted in the following schema, including the leading and trailing "```json" and "```":```json
{"gift": string  // Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown."delivery_days": string  // How many days did it take for the product to arrive? If this information                                       is not found, output -1."price_value": string  // Extract any sentences about the value or price, and output them as a comma                                     separated Python list.
}```

LLM会根据构造的prompt进行回答,生成最终的回答结果。接着构造完整的prompt:

review_template_2 = """\
For the following text, extract the following information:gift: Was the item purchased as a gift for someone else? \
Answer True if yes, False if not or unknown.delivery_days: How many days did it take for the product\
to arrive? If this information is not found, output -1.price_value: Extract any sentences about the value or price,\
and output them as a comma separated Python list.text: {text}{format_instructions}
"""prompt = ChatPromptTemplate.from_template(template=review_template_2)
messages = prompt.format_messages(text=customer_review, format_instructions=format_instructions)
print(messages[0].content)

输出如下:

For the following text, extract the following information:gift: Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown.delivery_days: How many days did it take for the productto arrive? If this information is not found, output -1.price_value: Extract any sentences about the value or price,and output them as a comma separated Python list.text: This leaf blower is pretty amazing.  It has four settings:candle blower, gentle breeze, windy city, and tornado. It arrived in two days, just in time for my wife's anniversary present. I think my wife liked it so much she was speechless. So far I've been the only one using it, and I've been using it every other morning to clear the leaves on our lawn. It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features.The output should be a markdown code snippet formatted in the following schema, including the leading and trailing "```json" and "```":```json
{"gift": string  // Was the item purchased as a gift for someone else? Answer True if yes, False if not or unknown."delivery_days": string  // How many days did it take for the product to arrive? If this information                                       is not found, output -1."price_value": string  // Extract any sentences about the value or price, and output them as a comma                                     separated Python list.
}```

6.3 使用LLM解决问题

response = chat(messages)
print(response.content)

输出如下:

```json
{"gift": "True","delivery_days": "2","price_value": "It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features."
}```

进行格式转换

output_dict = output_parser.parse(response.content)
print(output_dict)

输出如下:

{'gift': 'True', 'delivery_days': '2', 'price_value': "It's slightly more expensive than the other leaf blowers out there, but I think it's worth it for the extra features."}

接下来查看输出类型:

type(output_dict)

输出如下:

dict

接下来就可以愉快的使用输出数据了。

总的来说,langchain对于格式化输出和prompt构造拥有较好的效果,可以很好使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/21013.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构(C):从初识堆到堆排序的实现

目录 &#x1f31e;0.前言 &#x1f688; 1.堆的概念 &#x1f688; 2.堆的实现 &#x1f69d;2.1堆向下调整算法 &#x1f69d;2.2堆的创建&#xff08;堆向下调整算法&#xff09; ✈️2.2.1 向下调整建堆时间复杂度 &#x1f69d;2.3堆向上调整算法 &#x1f69d;2.…

testcontainer

在我们的项目中&#xff0c;单元测试是保证我们代码质量非常重要的一环&#xff0c;但是我们的业务代码不可避免的需要依赖外部的系统或服务如DB&#xff0c;redis&#xff0c;其他外部服务等。如何保证我们的测试代码不受外部依赖的影响&#xff0c;能够稳定的运行成为了一件比…

c++------类和对象(下)包含了this指针、构造函数、析构函数、拷贝构造等

文章目录 前言一、this指针1.1、this指针的引出1.2、 this指针的特性 二、类的默认的六个构造函数2.1、构造函数简述2.2构造函数 三、析构函数3.1、析构函数引出3.2、特点&#xff1a; 四、拷贝构造4.1、引入4.2、特征&#xff1a;4.3、默认拷贝构造函数 总结 前言 在本节中&a…

中国的历史看中国的经济发展

从中国的历史看中国的经济发展&#xff0c;可以发现其经历了几个显著的阶段&#xff0c;每个阶段都有其独特的特点和成就&#xff1a; 古代经济&#xff1a;中国古代经济以农业为主&#xff0c;实行井田制&#xff0c;重视水利工程的建设&#xff0c;如都江堰、灵渠等。 商业发…

Compose Multiplatform 1.6.10 发布,解释一些小问题, Jake 大佬的 Hack

虽然一直比较关注跨平台开发&#xff0c;但其实我很少写 Compose Multiplatform 的内容&#xff0c;因为关于 Compose Multiplatform 的使用&#xff0c;其实我并没在实际生产环境上发布过&#xff0c;但是这个版本确实值得一提&#xff0c;因为该版本包含&#xff1a; iOS Bet…

数据库(15)——DQL分页查询

DQL分页查询语法 SELECT 字段列表 FROM 表名 LIMIT 起始索引&#xff0c;查询记录数; 注&#xff1a;起始索引从0开始&#xff0c;起始索引&#xff08;查询页码-1&#xff09;*每页显示记录数。 如果查询的是第一页&#xff0c;可以省略起始索引。 示例&#xff1a;查询第一页…

【考研数学】概率论如何复习?跟谁好?

概率论一定要跟对老师&#xff0c;如果跟对老师&#xff0c;考研基本上能拿满分 概率论在考研试卷中占比并不大&#xff0c;其中&#xff1a; 高等数学&#xff0c;90分&#xff0c;约占比60%; 线性代数&#xff0c;30分&#xff0c;约占比20%; 概率论与数理统计&#xff0…

hive中的join操作及其数据倾斜

hive中的join操作及其数据倾斜 join操作是一个大数据领域一个常见的话题。归根结底是由于在数据量超大的情况下&#xff0c;join操作会使内存占用飙升。运算的复杂度也随之上升。在进行join操作时&#xff0c;也会更容易发生数据倾斜。这些都是需要考虑的问题。 过去了解到很…

每日5题Day15 - LeetCode 71 - 75

每一步向前都是向自己的梦想更近一步&#xff0c;坚持不懈&#xff0c;勇往直前&#xff01; 第一题&#xff1a;71. 简化路径 - 力扣&#xff08;LeetCode&#xff09; class Solution {public String simplifyPath(String path) {Deque<String> stack new LinkedList…

mysql的增删查改(进阶)

目录 一. 更复杂的新增 二. 查询 2.1 聚合查询 COUNT SUM AVG MAX MIN 2.1.2 分组查询 group by 子句 2.1.3 HAVING 2.2 联合查询/多表查询 2.2.1 内连接 2.2.2 外连接 2.2.3 全外连接 2.2.4 自连接 2.2.5 子查询 2.2.6 合并查询 一. 更复杂的新增 将从表名查询到…

自动化办公01 smtplib 邮件⾃动发送

目录 一、准备需要发送邮件的邮箱账号 二、发送邮箱的基本步骤 1. 登录邮箱 2. 准备数据 3. 发送邮件 三、特殊内容的发送 1. 发送附件 2. 发送图片 3. 发送超文本内容 4.邮件模板内容 SMTP&#xff08;Simple Mail Transfer Protocol&#xff09;即简单邮件传输协议…

霍夫曼树教程(个人总结版)

背景 霍夫曼树&#xff08;Huffman Tree&#xff09;是一种在1952年由戴维霍夫曼&#xff08;David A. Huffman&#xff09;提出的数据压缩算法。其主要目的是为了一种高效的数据编码方法&#xff0c;以便在最小化总编码长度的情况下对数据进行编码。霍夫曼树通过利用出现频率…

【Qt秘籍】[009]-自定义槽函数/信号

自定义槽函数 在Qt中自定义槽函数是一个直接的过程&#xff0c;槽函数本质上是类的一个成员函数&#xff0c;它可以响应信号。所谓的自定义槽函数&#xff0c;实际上操作过程和定义普通的成员函数相似。以下是如何在Qt中定义一个自定义槽函数的步骤&#xff1a; 步骤 1: 定义槽…

<jsp:setProperty>设置有参构造函数创建的自定义对象的属性

假设某一个类&#xff08;如TextConverter类&#xff09;有一个无参构造函数和一个有参构造函数&#xff0c;我们可以在Servlet里面先用有参构造函数自己new一个对象出来&#xff0c;存到request.setAttribute里面去。 Servlet转发到jsp页面后&#xff0c;再在jsp页面上用<j…

django基于大数据+Spring的新冠肺炎疫情实时监控系统设计和实现

设计一个基于Django(后端)和Spring(可能的中间件或服务集成)的新冠肺炎疫情实时监控系统涉及多个方面,包括数据收集、数据处理、数据存储、前端展示以及可能的中间件服务(如Spring Boot服务)。以下是一个大致的设计和实现步骤: 1. 系统架构 前端:使用Web框架(如Reac…

三种字符串的管理方式

NSString的三种实现方式 OC这个语言在不停的升级自己的内存管理&#xff0c;尽量的让自己的 OC的字符串 问题引入 在学习字符串的过程中间会遇到一个因为OC语言更新造成的问题 例如&#xff1a; int main(int argc, const char * argv[]) {autoreleasepool {NSString* str1 …

C++核心编程类的总结封装案例

C类的总结封装案例 文章目录 C类的总结封装案例1.立方体类的封装2.点与圆的关系的封装3.总结 1.立方体类的封装 在C中&#xff0c;我们可以定义一个立方体&#xff08;Cube&#xff09;类来封装立方体的属性和方法。立方体的属性可能包括边长&#xff08;side length&#xff…

【redis】set和zset常用命令

set 无序集合类型 sadd 和 smembers SADD&#xff1a;将一个或者多个元素添加到set中。注意,重复的元素无法添加到set中。 语法&#xff1a;SADD key member [member] 把集合中的元素,叫做member,就像hash类型中,叫做field类似. 返回值表示本次操作,添加成功了几个元素. 时间复…

网络原理——http/https ---http(1)

T04BF &#x1f44b;专栏: 算法|JAVA|MySQL|C语言 &#x1faf5; 今天你敲代码了吗 网络原理 HTTP/HTTPS HTTP,全称为"超文本传输协议" HTTP 诞⽣与1991年. ⽬前已经发展为最主流使⽤的⼀种应⽤层协议. 实际上,HTTP最新已经发展到 3.0 但是当前行业中主要使用的HT…

概念解析 | 为什么SAR中的天线间隔需要是四分之一波长?

注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:为什么SAR中的天线间隔需要是四分之一波长 概念解析 | 为什么SAR中的天线间隔需要是四分之一波长? 在这篇文章中,我们将深入探讨**合成孔径雷达(SAR)**系统中,为什么天…