5.23R语言-参数假设检验

理论

方差分析(ANOVA, Analysis of Variance)是统计学中用来比较多个样本均值之间差异的一种方法。它通过将总变异分解为不同来源的变异来检测因子对响应变量的影响。方差分析广泛应用于实验设计、质量控制、医学研究等领域。

方差分析的基本模型

方差分析的基本模型可以用以下形式表示:

单因素方差分析

单因素方差分析(One-Way ANOVA)是最简单的形式,用于比较一个因素的多个水平对结果的影响。例如,比较不同肥料对作物生长的影响。

步骤:

1.假设检验

2.计算组间方差和组内方差

组间方差(MSB,Mean Square Between groups)

组内方差(MSW,Mean Square Within groups):↳

3.计算F值

4.查找临界值

5.做出决策

如果计算得到的F值大于临界值,则拒绝原假设,说明组间均值存在显著差异。

如果计算得到的F值小于等于临界值,则不拒绝原假设,说明组间均值不存在显著差异。

多因素方差分析

多因素方差分析(Two-Way ANOVA 或 Factorial ANOVA)用于同时研究两个或多个因素对结果的影响,且可以考察因素间的交互作用。例如,研究不同肥料和不同灌溉方式对作物生长的联合影响。

方差分析的假设条件

  1. 独立性:各组别的观测值相互独立。
  2. 正态性:各组别的观测值服从正态分布。
  3. 方差齐性:各组别的方差相等。

如果数据不符合这些假设,方差分析的结果可能会失真,因此进行正态性检验可以帮助我们评估模型的适用性。

在进行正态性检验时,我们主要关注检验的 p 值。如果 p 值较大(通常大于 0.05),则表明数据符合正态分布的假设,可以继续进行方差分析。如果 p 值较小,则可能需要考虑使用非参数方法或对数据进行转换以满足模型假设。

实际应用中的考虑

在实际应用中,必须确保满足方差分析的假设条件,否则结果可能不可靠。当假设条件不满足时,可以考虑使用非参数检验(如Kruskal-Wallis检验)或调整模型(如方差不齐的情形下使用Welch's ANOVA)。

结论

方差分析是一个强大的统计工具,可以有效地检测多个组别之间的差异。然而,应用时需要谨慎,确保数据符合基本假设,并在必要时进行模型调整或采用其他统计方法。随着统计学的不断发展,方差分析的方法和应用也在不断进步,研究人员需要不断更新知识,以便在复杂的实际问题中作出准确的判断。

R语言实操-方差分析模型

方差分析(ANOVA)模型用于比较多个组之间的均值是否有显著差异。进行方差分析模型,最好对数据进行正态性检验。正态性检验有助于确认方差分析模型的假设是否满足,特别是方差分析对数据的正态性有一定的要求。写了另一篇关于正态性检验的文章:

5.22 R语言-正态性检验-CSDN博客文章浏览阅读66次,点赞2次,收藏4次。正态性检验的目的是确定一组数据是否符合正态分布(也称高斯分布)。在统计分析和数据建模中,正态性假设是许多统计方法和模型的基础。了解数据是否符合正态分布有助于选择适当的统计方法和确保分析结果的有效性。本文主要从方面来进行正态性检验。即假设检验的角度来说,数据是否服从正态分布可以通过与“”这样一个零假设进行假设检验计算,构建相关统计量来计算出检验结果。文中提及的Q-Q Plot是正态检验 (Normality Test)——常见方法汇总与简述-CSDN博客。https://blog.csdn.net/Shirleyluck/article/details/139131768?spm=1001.2014.3001.5501icon-default.png?t=N7T8https://blog.csdn.net/Shirleyluck/article/details/139131768?spm=1001.2014.3001.5501

进行方差分析(ANOVA)模型的步骤
  1. 准备数据:确保你的数据是干净和适合分析的。

  2. 拟合模型:使用 aov 函数拟合方差分析模型。

  3. 检验模型假设:包括正态性检验和方差齐性检验。

  4. 查看结果:使用 summary 函数查看方差分析的结果

 m = aov(Time ~ IDE, data=ide2)

使用 aov 函数来拟合一个方差分析(ANOVA)模型。具体而言,你正在比较不同 IDE 组别之间的 Time 数据是否存在显著差异

  • aov(Time ~ IDE, data=ide2): 这行代码指定模型的公式,即 Time 是因变量,IDE 是自变量。data=ide2 指定了数据来源。
  • m = : 这行代码将拟合的模型赋值给变量 m,以便后续进行模型检验和结果分析。

可以使用 summary(m) 来查看方差分析的结果,了解各个组别之间的差异是否显著。

summary(m) 的输出通常包含以下部分:

  • Df(自由度):自变量和误差的自由度。
  • Sum Sq(平方和):自变量和误差的平方和。
  • Mean Sq(均方):平方和除以相应的自由度。
  • F value(F值):自变量的均方除以误差的均方得到的F值。
  • Pr(>F)(P值):F值对应的P值,用于判断显著性。
# 拟合方差分析模型
m <- aov(Time ~ IDE, data = ide2)# 正态性检验
install.packages("nortest")
library(nortest)
shapiro.test(ide2[ide2$IDE == "VStudio",]$Time)
shapiro.test(ide2[ide2$IDE == "Eclipse",]$Time)# 方差齐性检验
bartlett.test(Time ~ IDE, data = ide2)
install.packages("car")
library(car)
leveneTest(Time ~ IDE, data = ide2)# 查看方差分析的结果
summary(m)
绘制Q-Q 图

为了评估方差分析模型(ANOVA)假设的正态性,使用qqnorm和qqline绘制 Q-Q 图。 Q-Q 图(Quantile-Quantile Plot)是一种图形方法,用于比较数据的分布与正态分布。如果数据点大致沿着一条直线分布,则数据可以被认为是正态分布的

##试试检验假设

#首先是正态性假设
# Shapiro-Wilk normality test(夏皮罗-威尔克检验)
shapiro.test(ide2[ide2$IDE == "VStudio",]$Time) #H0:研究对象符合正态分布。
shapiro.test(ide2[ide2$IDE == "Eclipse",]$Time)
## 满足正态性假设

# 但真正重要的是残差正态性【仅展示】
m = aov(Time ~ IDE, data=ide2) # fit model
shapiro.test(residuals(m)) # test residuals
qqnorm(residuals(m)); qqline(residuals(m)) # plot residuals
## 如果残差是正态分布的,那么这些点应该近似地落在一条直线上。
## qqline函数在这图上添加了一条参考线,这条参考线是正态分布的理论分位数线,有助于直观判断残差是否近似正态分布。

# 不正态可以尝试数据转换【仅展示】
ide2$logTime = log(ide2$Time) # log transform
View(ide2) # verify

#其次是方差齐性假设 # 方差齐性检验就是看两总体方差是否相等.比如在两独立样本的t检验中,两总体方差1.相等 2.不相等
install.packages("car")
library(car)
leveneTest(Time ~ IDE, data=ide2, center=mean) # Levene's test:用于检验两组及两组以上独立样本的方差是否相等。
leveneTest(Time ~ IDE, data=ide2, center=median) # Brown-Forsythe test: Brown-Forsythe检验是指采用Brown-Forsythe分布的统计量进行的各组均值是否相等的检验。

##执行独立样本T检验: 单总体t检验是检验一个样本平均数与一个已知的总体平均数的差异是否显著。
t.test(Time ~ IDE, data=ide2, var.equal=TRUE) #var.equal= TRUE 方差相等
###根据上述结果,可以得出结论:有足够证据拒绝零假设,接受备择假设,即Eclipse和VStudio在完成任务所需平均时间上存在显著差异。
###具体来说,Eclipse组的平均时间比VStudio组多166.05个单位(468.15 - 302.10),并且这个差异是统计上显著的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/19849.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重庆人文科技学院建立“软件安全产学研基地”,推动西南地区软件安全发展

5月29日&#xff0c;重庆人文科技学院与开源网安签订了《产学研校企合作协议》&#xff0c;并举行了“重庆人文科技学院产学研基地”授牌仪式&#xff0c;此次合作不仅深化了双方在软件安全领域的产学研紧密联结&#xff0c;更是对川渝乃至西南地区软件供应链安全发展起到重要的…

力扣linkedlist

反转链表、 public class reverseList { // 1->2->3->o 、 o<-1<-2<-3public ListNode reverseList(ListNode head){//反转链表ListNode prevnull;ListNode currhead;while(curr!null){ListNode nextcurr.next;curr.nextprev;prevcurr;currnext;}retu…

AI免费插件 批量条码大师,支持100多种条码类型

没想到在网上看到一款和之前 悟空条码 类似的条码插件&#xff0c;叫批量条码大师&#xff0c;他做的比 悟空条码 功能更强&#xff0c;界面更美观&#xff0c;特分享出来给大家。 本插件采用了BWIPJS条码库&#xff0c;支持110种条码、二维码的生成; 支持批量生成&#xff0c;…

爱堡集团数智掘金—共绘上市蓝图

&#xff08;本台记者报&#xff09;2024年5月26日爱堡集团在浙江省杭州市上城区瑞莱克斯大酒店隆重召开规模达500人的盛会。这场聚焦智慧与创新的会议&#xff0c;旨在加速爱堡集团的数智化转型进程&#xff0c;并为其上市之路绘制蓝图&#xff0c;吸引了众多行业领袖和媒体的…

Qt 插件机制使用及原理

目录 1.引言 2.插件原理 3.插件实现 3.1.定义一个接口集(只有纯虚函数的类) 3.2.实现接口 4.插件的加载 4.1.静态插件 4.1.1.静态插件实现方式 4.1.2.静态插件加载的过程 4.1.3.示例 4.2.动态插件 4.2.1.动态插件的加载过程 5.定位插件 6.插件开发的优势 7.总结…

GPT-4o有点坑

GPT-4o有点坑 0. 前言1. GPT-4o简介2. GPT-4o带来的好处2.1 可以上传图片和文件2.2 更丰富的功能以及插件 3. "坑"的地方3.1 使用时间短3.2 GPT-4o变懒了 4. 总结 0. 前言 原本不想对GPT-4o的内容来进行评论的&#xff0c;但是看了相关的评论一直在说&#xff1a;技…

Ai晚班车531

1.中央网信办等三部门&#xff1a;加快推进大模型、生成式人工智能标准研制。 2.中国石油与中国移动、华为、科大讯飞签署合作协议。 3.Opera浏览器与谷歌云合作&#xff0c;接入 Gemini 大模型。 4.谷歌 Gemini 加持Chromebook Plus。 5.英飞凌&#xff1a;开发 8kW和12kW…

速盾:cdn和udp的区别?

CDN&#xff08;Content Delivery Network&#xff09;和UDP&#xff08;User Datagram Protocol&#xff09;是网络领域中常用的两个术语&#xff0c;分别代表了不同的技术和功能。下面将分别介绍它们的区别。 功能和应用场景 CDN是一种分布式架构的网络服务&#xff0c;通过在…

改进YOLOv8系列:构建新型单头transformer模块,加入到骨干尾部

改进YOLOv8系列:构建新型单头transformer模块,加入到骨干尾部 需要修改的代码self attention代码创建yaml文件测试是否创建成功本文提供了改进 YOLOv8注意力系列包含不同的注意力机制以及多种加入方式,在本文中具有完整的代码和包含多种更有效加入YOLOv8中的yaml结构,读者…

【论文导读】Grid Graph Reduction for Efficient Shortest Pathfinding(2023 Access)

Grid Graph Reduction for Efficient Shortest Pathfinding 作者&#xff1a;CHAN-YOUNG KIM AND SANGHOON SULL 文章提出了一种“基于模式识别的网格阻塞”&#xff08; Pattern-Based Blocking on grid graphs&#xff0c;PBGG&#xff09;的预处理方法&#xff0c;以加快最…

XML Web 服务技术解析:WSDL 与 SOAP 原理、应用案例一览

XML Web服务是一种用于在网络上发布、发现和使用应用程序组件的技术。它基于一系列标准和协议&#xff0c;如WSDL、SOAP、RDF和RSS。下面是一些相关的内容&#xff1a; WSDL&#xff08;Web服务描述语言&#xff09;&#xff1a;用于描述Web服务的基于XML的语言&#xff0c;定义…

安卓手机APP开发___广播概述

安卓手机APP开发___广播概述 目录 概述 关于系统广播 系统广播所发生的更改 接收广播 清单声明的接收器 上下文注册的接收器 对进程状态的影响 发送广播 通过权限限制广播 带权限的发送 带权限的接收 安全注意事项和最佳做法 概述 Android 应用可以通过 Android …

数据分析案例-在线食品订单数据可视化分析与建模分类

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

springmvc揭秘参数解析

参数解析 说到参数解析&#xff0c;springmvc中处理参数的是HandlerMethodArgumentResolver接口 public interface HandlerMethodArgumentResolver { // 判断是否支持该类型参数 boolean supportsParameter(MethodParameter parameter); // 进行参数解析 Object resolv…

[羊城杯 2021]BabySmc

运行就是输入flag 不知道怎么跳过去的 这个应该就是smc加密的函数了 运行完这个函数才能继续往下 int __cdecl main(int argc, const char **argv, const char **envp) {__int64 v3; // rbx__int64 v4; // r12__int64 v5; // r13unsigned __int64 v6; // raxchar v7; // spcha…

学习Vue中图片上传前进行压缩的实现方法

学习Vue中图片上传前进行压缩的实现方法 一、前言1. 为什么要在客户端进行图片压缩&#xff1f;2. Vue组件中实现图片上传前压缩的方法3. 注意事项与优化4. 总结 一、前言 在Web开发中&#xff0c;图片上传是一个常见的功能需求&#xff0c;而客户端对图片进行压缩可以有效减小…

企业如何进行快递运费对账?

在电子面单寄件取代手写纸质面单之后&#xff0c;加上月结寄件模式的推行&#xff0c;企业快递运费对账&#xff0c;成了行政的一个难题...... 早期的手写纸质面单寄件&#xff0c;企业行政或者财务相关人员&#xff0c;遵循寄前审批&#xff0c;寄后报销的原则进行对账。随着电…

FinalShell无法连接Linux

Linux使用Vmware会创建一个网络&#xff0c;让两个子网处于一个网关&#xff0c;这样就能在windows中连接Linux&#xff0c;只有在这种情况下才能FinalShell才能连接Linux

面试题合集(2)

1. Self Attention的时候 Q K T QK^T QKT之后要除以 d ? \sqrt{d}? d ​? 参考苏剑林大神&#xff1a; 浅谈Transformer的初始化、参数化与标准化 模型初始化&#xff1a;介绍了常用的采样分布&#xff0c;包括正态分布、均匀分布和截尾正态分布。并从代数角度理解初始化方…

module_param的用法

在Linux内核模块编程中,`module_param`宏允许你声明一个模块参数。模块参数是指可以在加载模块时从命令行设置的参数,也可以通过/sys文件系统(如果内核配置了CONFIG_SYSFS)在模块加载后进行修改。这些参数对于调整模块的行为而不需要重新编译模块代码非常有用。 使用方法 …