每日AIGC最新进展(10):符号音乐生成SYMPLEX、新型图像编辑数据集ReasonPix2Pix、角色一致性插画生成、高级的风格个性化扩散模型

Diffusion Models专栏文章汇总:入门与实战

SYMPLEX: Controllable Symbolic Music Generation using Simplex Diffusion with Vocabulary Priors

http://arxiv.org/abs/2405.12666v1 

本文介绍了一种新的符号音乐生成方法,名为SYMPLEX,它基于单纯形扩散(Simplex Diffusion,SD)模型,通过操作概率分布而非信号空间来生成音乐。该方法利用词汇表先验(vocabulary priors)来控制音乐的生成过程,允许在不进行任务特定模型调整或应用外部控制的情况下,对时间和音高进行填充、选择乐器等。

SYMPLEX模型采用SSD-LM作为基础,SSD-LM是一种基于窗口的单纯形扩散模型,用于生成任意长度的自然语言序列。与SSD-LM处理序列不同,SYMPLEX操作的是一组包含9个属性的音符事件集合。模型通过训练神经网络从噪声概率中恢复数据样本,并在生成新样本时,从随机初始化的概率开始,逐步迭代细化。此外,通过将词汇表先验与当前概率相乘并重新归一化,可以在不依赖外部模型的情况下控制生成过程。

作者从MetaMIDI数据集中提取了4小节多乐器MIDI循环,并构建了一个包含约25万个循环的数据集。他们使用了一种无序集合表示法来表示MIDI循环,每个音符事件包含9个属性。实验中,SYMPLEX在多个任务上进行了演示,包括无条件生成、有条件生成以及多种编辑任务。作者还讨论了未来工作,包括如何避免根据不同生成场景调整参数设置,以简化工作流程。

ReasonPix2Pix: Instruction Reasoning Dataset for Advanced Image Editing

http://arxiv.org/abs/2405.11190v1

本文介绍了一个名为ReasonPix2Pix的新型图像编辑数据集,旨在提升生成模型在遵循人类指令进行图像编辑时的推理能力。现有的图像编辑模型通常只能理解明确具体的指令,但在处理隐含或定义不明确的指令时表现出推理能力的不足。为了解决这一问题,研究者们创建了ReasonPix2Pix,这是一个包含推理指令、更真实图像和输入与编辑图像之间更大变化的数据集

ReasonPix2Pix数据集通过三个部分来增强模型的推理能力:第一部分利用InstructPix2Pix数据集中的图像对,生成推理指令;第二部分和第三部分则通过生成新的编辑图像和指令来提升模型对现实图像的编辑能力。研究者们还结合了多模态大型语言模型(MLLM)和扩散模型来构建一个简单的框架,该框架能够理解指令的明确或隐含意图,并生成符合指令的输出图像。

在实验部分,研究者们使用了GPT-3.5-turbo生成数据集,并采用了Stable Diffusion v1.5和LLaVA-7Bv1.5进行微调。他们将图像大小调整为256×256,并在训练期间使用了基础学习率。通过定性和定量的实验结果,证明了ReasonPix2Pix在不需要推理和需要推理的指令编辑任务中均展现出优越的性能。用户研究也表明,当指令变得更加隐含时,ReasonPix2Pix与先前方法相比具有更大的优势。最后,研究者们讨论了数据集的局限性,并指出了数据集规模因API成本而受限,但提供了清晰的数据生成流程,以便研究人员可以扩展数据集规模。

Evolving Storytelling: Benchmarks and Methods for New Character Customization with Diffusion Models

http://arxiv.org/abs/2405.11852v1

本文探讨了如何将新角色有效地融入现有叙事中,并保持角色一致性的问题,特别是在数据有限的情况下。作者指出,现有的故事可视化生成模型在整合新角色时存在两大限制缺乏合适的基准测试和新旧角色区分的挑战。为了解决这些问题,作者提出了"NewEpisode"基准测试,包含经过改进的数据集,用于评估生成模型在仅使用单一示例故事生成新故事的能力

作者引入了"EpicEvo"方法,这是一种定制的扩散模型,用于视觉故事生成。"EpicEvo"通过一个新颖的对抗性角色对齐模块扩散过程中逐步对齐生成图像与新角色的示例图像,同时应用知识蒸馏来防止忘记角色和背景细节。这种方法使得模型能够学习如何生成包含现有角色和/或新角色的故事,并且通过对抗性角色对齐模块鼓励模型独特地生成角色,并通过从预训练模型中提取知识来保持模型先验。

为了验证"EpicEvo"的有效性,作者在"NewEpisode"基准测试上进行了定量和定性的研究。实验结果表明,"EpicEvo"在基准测试上的定量表现超过了现有的基线,并且通过质量研究确认了其在扩散模型中定制视觉故事生成的优越性。总结来说,"EpicEvo"提供了一种有效的方法,仅使用一个示例故事就能融入新角色,为诸如连载卡通等应用开辟了新的可能性。

TriLoRA: Integrating SVD for Advanced Style Personalization in Text-to-Image Generation

http://arxiv.org/abs/2405.11236v1

本文提出了一种名为TriLoRA的新方法,旨在改进文本到图像生成模型的微调过程,以实现更高级的风格个性化。现有的深度学习模型,如Stable Diffusion,在视觉艺术创作中应用广泛,但面临过拟合、生成结果不稳定和难以精确捕捉创造者所需特征等挑战。TriLoRA通过将奇异值分解(SVD)整合到低秩适应(LoRA)参数更新策略中,有效降低了过拟合风险,增强了模型输出的稳定性,并更准确地捕捉到创造者所需的微妙特征调整

TriLoRA是在LoRA框架内引入SVD的概念,通过训练两个适配器:一个标准低秩适配器(LoRA)和一个更小的适配器,这两个适配器相对于原始预训练权重并行训练。该方法的创新之处在于使用紧凑奇异值分解(Compact SVD)来确定创造者关注的特定特征数,从而提供更精确的选择空间。在TriLoRA框架中,通过将Compact SVD整合到LoRA中,优化了权重矩阵的更新,使得模型在保持较低参数数量的同时,提高了对新任务的适应性

为了评估TriLoRA和LoRA在特定风格或主题中的适应性,作者构建了两个数据集:一个包含多种幻想生物的Pokemon数据集,另一个是专注于特定风格服装的GAC数据集。实验采用了标准化Fréchet Inception距离(Normalized FID)和CLIP分数作为主要的定量评估指标,并辅以用户研究以提供定性见解。实验结果表明,TriLoRA在多个数据集上的表现优于LoRA,具有更好的模型泛化能力和创造性表达,同时保持了效率和资源限制下的优异性能。用户研究结果也支持了TriLoRA在文本视觉一致性和视觉吸引力方面的优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/15124.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【QGIS入门实战精品教程】5.3:CGCS2000转Lambert投影

参考阅读: 【GlobalMapper精品教程】081:WGS84/CGCS2000转Lambert投影 文章目录 一、加载实验数据二、投影转换三、批量投影转换一、加载实验数据 加载配套实验数据,如下图所示:图层为长沙市范围、长沙市酒店宾馆分布点位、湖南省酒店分布点位矢量数据。 双击图层,打开信…

网段与广播域

ip地址与子网掩码做与运算得到网络号,得到的网络号相同就是同一个网段,否则不是,跟他们在什么位置没有任何关系 这里面pc3和前两个pc虽然不在同一个网段,但是pc1发广播包的时候,pc3也能收到,因为路由器的所…

Vue 安装vue

1、官网安装下载安装nodejs 2、安装完成后,通过命令查看版本,可以查看到版本 node -v npm -v 3、安装Vue CLi npm install -g vue/cli 4、创建项目,vue create test 如果遇到报错: ERROR Error: spawn yarn ENOENT Error: spawn yarn ENOENT at ChildP…

Dilworth 定理

这是一个关于偏序集的定理,事实上它也可以扩展到图论,dp等中,是一个很有意思的东西 偏序集 偏序集是由集合 S S S以及其上的一个偏序关系 R R R定义的,记为 ( S , R ) (S,R) (S,R) 偏序关系: 对于一个二元关系 R ⊂…

用 vue3 + phaser 实现经典小游戏:飞机大战

本文字数:7539字 预计阅读时间:30分钟 01 前言 说起小游戏,最经典的莫过于飞机大战了,相信很多同学都玩过。今天我们也来试试开发个有趣的小游戏吧!我们将从零开始,看看怎样一步步实现一个H5版的飞机大战&a…

【pyspark速成专家】4_Spark之RDD编程2

目录 四,常用PairRDD的转换操作 五,缓存操作 四,常用PairRDD的转换操作 PairRDD指的是数据为长度为2的tuple类似(k,v)结构的数据类型的RDD,其每个数据的第一个元素被当做key,第二个元素被当做value. reduceByKey #reduceByKey…

如何参与github开源项目并提交PR

👽System.out.println(“👋🏼嗨,大家好,我是代码不会敲的小符,目前工作于上海某电商服务公司…”); 📚System.out.println(“🎈如果文章中有错误的地方,恳请大家指正&…

高速公路定向广播(声光一体) HT-600D

1、产品概述: HT-600D声光一体平面波IP定向广播是北京恒星科通创新性研发产品,采用公司自主研发的平面波传声技术,该产品具有高声压、强指向性、高清晰度等特点,采用定向声传声技术将声音聚集到正前方定向传输,周边声压级明显降低…

YOLOV10实时端到端目标检测

代码地址:GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection 论文地址:https://arxiv.org/pdf/2405.14458 本文介绍了YOLO系列目标检测器在实时和高效方面的优势,但是仍然存在一些缺陷,包括依赖非极大值…

React useState修改对象

在 React 中,useState 是一个 Hook,它可以让函数组件拥有状态。当想要改变一个对象类型的状态时,我们需要使用展开运算符(...)或者 Object.assign 来确保状态是正确地更新。 以下是一个使用 useState 来更新对象的例子…

webstorm新建vue项目相关问题

前言 这个迭代后端需求偏少,前端code的键盘都起火星子了。来了4个外包支持,1个后端3个前端,还是不够用啊。刚好趁这个机会稍微学习下vue,其实之前环境也配置过了,所以这里就不分享环境配置了,主要分享下新建…

Java开发大厂面试第22讲:Redis 是如何保证系统高可用的?它的实现方式有哪些?

高可用是通过设计,减少系统不能提供服务的时间,是分布式系统的基础也是保障系统可靠性的重要手段。而 Redis 作为一款普及率最高的内存型中间件,它的高可用技术也非常的成熟。 我们今天分享的面试题是,Redis 是如何保证系统高可用…

什么是组态?什么是工业控制中的组态软件?

随着工业4.0和智能制造的发展,工控软件的应用越来越广泛,它们在提高生产效率、降低能耗和减少人力成本等方面发挥着越来越重要的作用。 什么是工控软件? 工控软件是指用于工业控制系统的软件,主要应用于各种生产过程控制、自动化…

PLSQL连接Linux Oracle21c

PLSQL连接Linux Oracle21c 一、安装PLsql 下载官网 https://www.allroundautomations.com/registered-plsqldev/ 二、Oracle Instant Client下载 使用plsql连接oracle的时候是需要本地先安装oracle客户端,英文名就是Oracle Instant Client。 官方下载地址&…

初出茅庐的小李博客之用MQTT.fx软件进行消息发布与订阅【 基于EMQX Cloud】

MQTT.fx软件使用简单介绍 MQTT.fx 的软件界面如下图所示,最上方为 MQTT Broker 连接地址栏,及其连接配置。其下方功能 Tabs 含有 Publish 发布栏、Subscribe 订阅栏、Scripts 脚本栏、Broker Status 状态消息栏、Log 日志信息控制栏。 连接之前要明确几…

【Linux系列】软链接使用

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

深入编程逻辑:从分支到循环的奥秘

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、编程逻辑的基石:分支与循环 分支逻辑详解 代码案例:判断整数是…

UE5 双手握剑的实现(逆向运动学IK)

UE5 双手握剑的实现 IK 前言 什么是IK? UE官方给我们提供了很多对于IK处理的节点,比如ABRIK、Two Bone IK、Full Body IK 、CCD IK等,但是看到这,很多人就好奇了,什么是IK? 首先我们来看看虚幻小白人的骨…

[图解]产品经理创新之阿布思考法

0 00:00:00,000 --> 00:00:01,900 那刚才我们讲到了 1 00:00:02,730 --> 00:00:03,746 业务序列图 2 00:00:03,746 --> 00:00:04,560 然后怎么 3 00:00:05,530 --> 00:00:06,963 画现状,怎么改进 4 00:00:06,963 --> 00:00:09,012 然后改进的模式…

一条命令安装Metasploit Framework

做安全渗透的人都或多或少的使用kali-Linux系统中msfconsole命令启动工具,然而也经常会有人遇到这样那样的问题无法启动 今天我们就用一条命令来重新安装这个工具 curl https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/config/templates/met…