【机器学习】Scikit-Learn:Python机器学习的瑞士军刀

Scikit-Learn:Python机器学习的瑞士军刀

  • 一、Scikit-Learn简介
  • 二、Scikit-Learn的核心功能
    • 数据预处理
    • 模型选择
    • 模型评估
    • 模型部署
  • 三、Scikit-Learn的中文社区与API
  • 四、代码实例:使用Scikit-Learn进行鸢尾花数据集分类

在这里插入图片描述

在当今这个数据驱动的时代,机器学习技术的应用愈发广泛,从图像识别到自然语言处理,从金融预测到医疗健康,它都发挥着不可替代的作用。Python,作为一门易于上手且功能强大的编程语言,自然成为了机器学习的首选工具。而Scikit-Learn(简称sklearn),作为Python中一个极为重要且实用的机器学习库,更是备受广大开发者青睐。

一、Scikit-Learn简介

Scikit-Learn,一个开源的Python机器学习库,凭借其丰富的工具和算法,为数据科学家和机器学习研究者们提供了强大的支持。无论是数据预处理、模型选择、评估还是部署Sklearn都能提供一站式解决方案。同时,它支持有监督学习和无监督学习两大主流学习范式,满足了不同场景下的需求。

二、Scikit-Learn的核心功能

数据预处理

数据预处理是机器学习项目中不可或缺的一环。Scikit-Learn提供了诸如数据标准化、归一化、编码(如标签编码、独热编码)等预处理工具,帮助用户快速将原始数据转换为适合机器学习模型训练的格式。

模型选择

Scikit-Learn内置了大量经典的机器学习算法,如决策树、随机森林、支持向量机(SVM)、逻辑回归等。用户可以根据问题类型和数据特点选择合适的模型进行训练。同时,Sklearn还提供了交叉验证、网格搜索等模型选择工具,帮助用户找到最优的模型参数。

模型评估

评估模型的性能是机器学习过程中的重要环节。Scikit-Learn提供了诸如准确率、精确率、召回率、F1分数等多种评估指标,以及混淆矩阵、ROC曲线等可视化工具,帮助用户全面了解模型的性能。

模型部署

经过训练和评估后,模型需要被部署到实际环境中进行使用。Scikit-Learn提供了将模型保存为pickle文件或ONNX格式的功能,方便用户在其他环境或平台上进行部署。

三、Scikit-Learn的中文社区与API

对于初学者来说,掌握一个工具包的使用方法往往需要一定的时间和经验积累。幸运的是,Scikit-Learn拥有一个活跃的中文社区——scikit-learn.org.cn,里面包含了该工具包可以实现的各种功能,并给出了丰富的实例进行分析使用过程。通过这里的学习,可以更快地掌握Scikit-Learn的使用方法。

同时,Scikit-Learn的API文档也是非常重要的学习资料。其中,sklearn.base模块提供了基类和实用程序函数;sklearn.calibration模块用于概率校准;sklearn.cluster模块提供了各种聚类算法;sklearn.compose模块则用于构建复合估计器。

四、代码实例:使用Scikit-Learn进行鸢尾花数据集分类

下面是一个使用Scikit-Learn进行鸢尾花数据集分类的简单示例:

pythonfrom sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建随机森林分类器
clf = RandomForestClassifier(n_estimators=100, random_state=42)# 训练模型
clf.fit(X_train, y_train)# 预测测试集结果
y_pred = clf.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")

在这个示例中,我们使用了Scikit-Learn的load_iris函数加载了鸢尾花数据集,然后使用train_test_split函数将数据集划分为训练集和测试集。接着,我们创建了一个随机森林分类器,并使用训练集对其进行训练。最后,我们使用测试集对模型进行预测,并计算了准确率。

通过这个简单的示例,我们可以看到Scikit-Learn的强大功能和易用性。无论是数据加载、模型训练还是评估,都可以通过几行代码轻松实现。这也正是Scikit-Learn成为机器学习领域最受欢迎的工具包之一的原因所在。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/11563.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文《Deep graph tensor learning for temporal link prediction》阅读

论文《Deep graph tensor learning for temporal link prediction》阅读 论文概况IntroductionRelated work动态图表示学习图张量表示 Preliminary张量生成建模 深度图张量学习模型A.基于图紧凑的空间表示B.时间模式表示C.时空特征聚合D.损失函数 实验数据集对比实验消融实验参…

鸿蒙ArkUI开发:常用布局【交叉轴】

交叉轴 垂直于主轴方向的轴线。Row容器交叉轴为纵向,Column容器交叉轴为横向。通过alignItems属性设置子元素在交叉轴(排列方向的垂直方向)上的对齐方式alignSelf属性用于控制单个子元素在容器交叉轴上的对齐方式,其优先级高于al…

M 有效算法

M 有效算法 本题考验二分知识&#xff0c;思路是二分k的取值&#xff0c;就按第一组样例来说当我们k取值为1的时候我们遍历数组想让|8-x|<k1的话x的取值范围是7-9&#xff0c;想让|3-x|<k2的话x的取值范围是1-5&#xff0c;两者x的区间不重合&#xff0c;说明肯定没有x能…

BGP—边界网关协议

BGP 动态路由协议可以按照工作范围分为IGP以及EGP。IGP工作在同一个AS内&#xff0c;主要用来发现和计算路由&#xff0c;为AS内提供路由信息的交换&#xff1b;而EGP工作在AS与AS之间&#xff0c;在AS间提供无环路的路由信息交换&#xff0c;BGP则是EGP的一种。 BGP是一…

打开深度学习的锁:(0)什么是神经网络?有哪些必备的知识点准备?

PS&#xff1a;每每温故必而知新 什么是神经网络&#xff1f; 一、一个单神经元的神经网络二、多个单神经元的神经网络三、到底什么是机器学习&#xff1f;&#xff08;重点&#xff09;1&#xff1a;什么是机器学习的训练&#xff1f;2&#xff1a;什么是模型&#xff1f;权重…

接口测试全流程扫盲..

一.为什么要做接口测试&#xff1f; ①.越底层发现bug&#xff0c;它的修复成本是越低的。 ②.前端随便变&#xff0c;接口测好了&#xff0c;后端不用变&#xff0c;前后端是两拨人开发的。 ③.检查系统的安全性、稳定性&#xff0c;前端传参不可信&#xff0c;比如京东购物…

拉链表实现过程+案例

第一种 1.从ODS层获取增量数据(上一天新增和更新的数据) 2.拿着DWD原始拉链表数据 left join 增量数据 ,修改原始拉链中历史数据的结束时间 3.拿着left join 的结果集 union all 增量数据 4.把最新的拉链数据优先保存到DWD对应的临时表中 5.使用insertselect 方式把临时表中…

哈希重要思想——位图详解

一&#xff0c;概念 所谓位图&#xff0c;就是用每一位来存放某种状态&#xff0c;适用于海量数据&#xff0c;数据无重复的场景。通常是用来判断某个数据存不存在的。 为了方便理解我们引入一道面试题&#xff0c; 给40亿个不重复的无符号整数&#xff0c;没排过序。给一个无…

Python3 笔记:二进制的转换

十进制是逢十进一&#xff0c;二进制就是逢二进一。 十进制里最大的数字是9&#xff0c;二进制里最大的数字是1。 11010010001000010000010000001000000010^0110^11010^210010^3100010^41000010^510000010^6100000010^7100000002^012^122^242^382^4162^5322^6642^7128 1、十进…

ES扩缩容

ES扩容 1.1 页面扩容ES1 1.2 拷贝插件及ssl文件 JSON [ec_admin@kde-offline3 ~]$ sudo rsync -avP /usr/kde_ec/2.3.6.6-1/elasticsearch1/plugins/* kde-offline6:/usr/kde_ec/2.3.6.6-1/elasticsearch1/plugins/ ;echo $? [ec_admin@kde-offline3 ~]$ sudo rsync -avP /us…

【Python探索之旅】初识Python

目录 发展史&#xff1a; 环境安装&#xff1a; 入门案例&#xff1a; 变量类型 标准数据类型 数字类型&#xff1a; 字符串&#xff1a; 全篇总结&#xff1a; 前言&#xff1a; Python 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。 Python 的设…

GEE数据集——东南亚区域油棕种种植分布(油棕榈树种植园的概率)数据集

森林数据伙伴关系围绕对全球商品驱动的森林砍伐、森林退化和恢复工作的全球监测&#xff0c;加强合作与应用。 世界各国政府和公司都承诺帮助制止砍伐森林和加快恢复&#xff0c;以避免气候变化带来的最坏影响&#xff0c;防止生物多样性丧失&#xff0c;保护森林对人类和自然…

TriCore:Interrupt 2

今天继续来看看 IR 模块。 名词缩写 缩写全称说明IRInterrupt Router SRService Request 包括&#xff1a; 1. External Resource 2. Internal Resource 3.SW&#xff08;Software&#xff09; SPService Privoder 包括&#xff1a; 1. CPU 2. DMA SRNService Request NodeS…

给第一次接触产品设计的写的

设计概念 设计原则 你可以参考以下的原则在每次评估一个网站时&#xff0c;建立excel&#xff0c;包含两个表格 表格1&#xff1a; 启发式评估 评估人员姓名 设备/浏览器/OS 网站URL 日期容易修复度 (ER) E0.修复需要最大的努力 E1.修复需要相当大的努力 E2.修复需要一些努…

FPGA+HDMI转换方案,用于网络直播切换直播画面,客户应用:直播,自媒体

FPGAHDMI转换方案&#xff0c;用于网络直播切换直播画面 客户应用:直播&#xff0c;自媒体 主要功能: 1.支持多路HDMI高清输入/输出 2.支持各路输入输出灵活切换 3.支持USB接口 4.支持网口 5.支持音频输出接口 6.支持serders

PHP单独项目启动演示

文章目录 phpstudy得到文件打开phpStudy.exe运行项目 Apache运行后又自动停止 phpstudy 得到文件 一般我们会得到这么一个项目文件&#xff0c;如果外层有“中文路径”&#xff0c;请剪切此内容作为项目根目录即可 打开phpStudy.exe 因为我又正常的编程环境和mysql&#x…

霍金《时间简史 A Brief History of Time》书后索引(I--L)

A–D部分见&#xff1a;霍金《时间简史 A Brief History of Time》书后索引&#xff08;A–D&#xff09; E–H部分见&#xff1a;霍金《时间简史 A Brief History of Time》书后索引&#xff08;E–H&#xff09; 图源&#xff1a;Wikipedia INDEX I Imaginary numbers Ima…

【C++要哮着学】初识C++,什么是C++?什么是命名空间?什么又是缺省函数?

文章目录 前言1、C简介1.1、什么是C1.2、C起源1.3、C发展 2、C关键字&#xff08;C98&#xff09;3、命名空间3.1、命名空间的定义及使用3.2、命名空间的嵌套3.3、命名空间的三种使用方式3.3.1、加命名空间名称及作用域限定符3.3.2、使用using将命名空间中某个成员引入3.3.3、使…

大舍传媒教你海外媒体广告投放的3个细分人群,“无需担忧!”

细分人群的重要性 在海外进行媒体广告投放时&#xff0c;理解和准确定位目标受众群体至关重要。细分人群可以帮助我们更好地了解他们的需求、兴趣和行为习惯&#xff0c;从而有效提升广告传播效果。本文将介绍大舍传媒推荐的三个海外细分人群&#xff0c;并为您提供解决方案&am…

Today At Apple 2024.05.12 上海静安 制作属于自己的表情符号

官网&#xff1a; https://www.apple.com/today/Apple 亚洲第一大商店&#xff1a;Apple 静安零售店现已在上海开幕如下预约课程&#xff1a;下载 Apple Store&#xff08;不是app store&#xff09;&#xff0c;点击课程预约笔记&#xff1a;Today At Apple Notes果粉加群 &am…