人工智能论文GPT-3(2):2020.5 Language Models are Few-Shot Learners;微调;少样本Few-Shot (FS)

2 方法Approach

我们的基本预训练方法,包括模型、数据和训练,与GPT-2中描述的过程相似,只是模型规模、数据集规模和多样性,以及训练时长有所扩大,相对简单直接。

我们使用的上下文学习也与GPT-2相似,但在这项工作中,我们系统地探索了不同上下文学习设置。

因此,我们首先明确定义并对比我们将评估GPT-3的不同设置,或者原则上可以评估GPT-3的设置。

这些设置可以被看作是一个谱系,它们依赖任务特定数据的程度各不相同。具体来说,我们可以在这个谱系上至少识别出四个点(如图2.1所示):

微调Fine-Tuning (FT)

微调(FT)是近年来最常见的方法,涉及在针对所需任务的监督数据集上训练,以更新预训练模型的权重。通常使用数千到数十万个带标签的示例。

微调的主要优势是在许多基准测试上表现出色。

主要缺点是每个任务都需要一个新的大型数据集,可能导致分布外泛化性能不佳[MPL19],以及可能利用训练数据的虚假特征[GSL+18, NK19],

这可能导致与人类性能的比较不公平。在这项工作中,我们没有对GPT-3进行微调,因为我们的重点是任务无关的性能,但原则上可以对GPT-3进行微调,这是未来工作的一个有前景的方向。

少样本Few-Shot (FS)

在本工作中,我们将使用“少样本(FS)”这一术语来指代这样一种设置:在推理时,模型接收到任务的几个演示作为条件输入[RWC+19],但不允许进行权重更新。

如图2.1所示,对于典型的数据集,一个示例包括一个上下文和一个期望的完成内容(例如一个英文句子和对应的法文翻译),少样本学习的工作方式是通过提供K个上下文和完成内容的示例,然后提供一个最终的上下文示例,模型需要提供对应的完成内容。我们通常将K设置在10到100的范围内,因为这么多示例可以适应模型的上下文窗口(nctx = 2048)。

少样本学习的主要优势是大大减少了对任务特定数据的需求,并降低了从大而狭窄的微调数据集中学习过于狭窄分布的可能性。

主要缺点是,这种方法的结果到目前为止比最先进的微调模型差得多。此外,仍然需要少量的任务特定数据。正如名称所示,这里描述的用于语言模型的少样本学习与机器学习(ML)中其他上下文中使用的少样本学习[HYC01, VBL+16]有关——两者都涉及基于广泛的任务分布进行学习(在这种情况下隐含在预训练数据中),然后迅速适应新任务。

一样本One-Shot (1S)

一样本(1S)与少样本相同,只是除了自然语言的任务描述外,只允许一个演示,如图1所示。将一样本与少样本和零样本(下面将介绍)区分开来的原因是,它最符合人类接收任务指令的方式。例如,当要求人类工作者在人工服务(如Mechanical Turk)上生成数据集时,通常会给出一个任务演示。相比之下,如果不提供示例,有时很难传达任务的内容或格式。

零样本Zero-Shot (0S)

零样本(0S)与一样本相同,只是不允许提供任何演示,模型仅接收描述任务的自然语言指令。这种方法提供了最大的便利性和潜在的鲁棒性,避免了虚假关联(除非它们在大规模预训练语料库中广泛出现),但同时也是最具挑战性的设置。在某些情况下,没有先前的示例,人类可能难以理解任务的格式,因此这种设置在某些情况下“过于困难”。例如,如果有人被要求“制作一份200米短跑世界纪录表”,这个请求可能是模糊的,因为可能不清楚表格的确切格式或应包含哪些内容(即使经过仔细澄清,也很难准确理解所需的内容)。然而,至少在某些情况下,零样本与人类执行任务的方式最为接近——例如,在图2.1中的翻译示例中,人类可能仅根据文本指令就知道该怎么做。

图2.1展示了使用英语到法语翻译示例的四种方法。在本文中,我们主要关注零样本、一样本和少样本,目的是将它们作为不同的问题设置进行比较,而不是作为相互竞争的替代方案,这些设置提供了在特定基准上的性能和样本效率之间的不同权衡。我们尤其强调少样本的结果,因为其中许多结果仅略逊于最先进的微调模型。然而,最终,一样本,有时甚至零样本,似乎是与人类性能最公平的比较,也是未来工作的重要目标。

以下2.1至2.3节分别详细介绍了我们的模型、训练数据和训练过程。2.4节讨论了如何进行少样本、一样本和零样本评估的细节。

Ankie的评论:

GPT-3论文标题明确指出:“Language Models are Few-Shot Learners”,这揭示了GPT-3模型采用了少样本(few-shot)学习模式,而非传统的微调模式。GPT-3致力于实现通用人工智能的目标,因此它选择了少样本模式进行推理,而不是仅仅通过微调来应试。在少样本模式下,模型接收任务的几个演示作为条件输入,但不进行权重更新,从而保持其通用性和灵活性。

然而,少样本模式也存在一些局限性。相比于微调模式,它在应对特定任务时的应试能力可能稍逊一筹。这是因为微调模式允许模型针对特定任务进行更深入的学习和适应,而少样本模式则更注重模型的泛化能力。尽管如此,GPT-3通过采用少样本学习模式,展现出了强大的推理和生成能力,为通用人工智能的实现迈出了重要的一步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/1136.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringCloud系列(8)--将服务提供者Provider注册进Eureka Server

前言:上一章节我们介绍了Eureka服务端的安装与配置,本章节则介绍关于微服务如何入职Eureka Server Eureka架构原理图 1、修改provider-payment8001子模块的pom.xml文件,引入Eureka Clinet的依赖,然后reolad一下,下载依…

Parade Series - CoreAudio Loopback

Scenario 鉴于业务场景需要, 经过技术路径探索, 发现 comtypes 兼容性过于混乱,故而考虑整合一个 CoreAudio 的轮子dll来解决实际问题!std::StringStream ⇒ std::ios::binary ⇒ std::ofstream Loopback.dll #ifndef _DLL_C…

数学建模--非线性规划模型+MATLAB代码保姆式解析

目录 1.简单介绍 2.求解方法 3.适用赛题 4.典型例题及相关分析 (1)问题引入 (2)决策变量&约束条件 (3)确定目标函数 (4)建立数学模型 5.MATLAB代码祝逐字句讲解 1.简单…

Redis系列之Cluster集群搭建

在上一篇博客,我们学习Redis哨兵Sentinel集群的搭建,redis的哨兵模式提供了比如监控、自动故障转移等高可用方案,但是这种方案,容量相对固定,要进行持续扩容或者数据分片就不适合,所以有另外一种更复杂的集…

图像处理的魔法师:Pillow 库探秘

文章目录 图像处理的魔法师:Pillow 库探秘第一部分:背景介绍第二部分:库是什么?第三部分:如何安装这个库?第四部分:库函数使用方法第五部分:场景应用第六部分:常见Bug及解…

YOLOv9改进策略 | 添加注意力篇 | 利用ILSVRC冠军得主SENetV1改善网络模型特征提取能力

一、本文介绍 本文给大家带来的改进机制是SENet(Squeeze-and-Excitation Networks)其是一种通过调整卷积网络中的通道关系来提升性能的网络结构。SENet并不是一个独立的网络模型,而是一个可以和现有的任何一个模型相结合的模块(可以看作是一…

最新Java面试题3【2024中级】

互联网大厂面试题 1:阿里巴巴Java面试题 2:阿里云Java面试题-实习生岗 3:腾讯Java面试题-高级 4:字节跳动Java面试题 5:字节跳动Java面试题-大数据方向 6:百度Java面试题 7:蚂蚁金服Java…

PyCharm,终端conda环境无法切换的问题(二个解决方案)

问题 PyCharm终端,环境切换无效,默认始终为base 解决一 Settings->Tools->Terminal->ShellPath,将powershell修改为cmd.exe 解决二 conda config --show在输出中找到 auto_activate_base 的行,发现被设置为 true&#x…

HTML作业

作业1: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><style>.down…

Android Studio Iguana | 2023.2.1配置优化

一. 前言 本篇文章记录最新版本的Android Studio的配置优化&#xff0c;写这篇文章的是由于电脑中的AS工具更新版本覆盖安装后&#xff0c;AS会经常卡死&#xff0c;Debug的时候也经常莫名其妙的断掉&#xff0c;非常影响工作效率&#xff0c;所以重新把配置环境整理一下&#…

11.事件处理

事件处理 我们可以使用 v-on 指令 (简写为 ) 来监听 DOM 事件&#xff0c;并在事件触发时执行对应的 JavaScript。用法&#xff1a;v-on:click"methodName" 或 click"handler" 事件处理器的值可以是 内联事件处理器&#xff1a;事件被触发时执行的内联 J…

[阅读笔记21][RA-CM3]Retrieval-Augmented Multimodal Language Modeling

这篇论文是meta联合斯坦福在23年4月发表的论文&#xff0c;提出了一个使用外部知识检索增强的多模态模型。 这篇模型提出的RA-CM3模型是第一个能够检索并生成图像文本的多模态模型&#xff0c;在图像文本生成任务上优于现有的多模态模型&#xff0c;同时使用更少的训练量。 RA-…

区间图着色问题:贪心算法设计及实现

区间图着色问题&#xff1a;贪心算法设计及实现 1. 问题定义2. 贪心算法设计2.1 活动排序2.2 分配教室2.3 算法终止 3. 伪代码4. C语言实现5. 算法分析6. 结论7. 参考文献 在本文中&#xff0c;我们将探讨如何使用贪心算法解决一个特定的资源分配问题&#xff0c;即区间图着色问…

物联网实战--驱动篇之(九)NB-IOT(BC260)

目录 一、NB-IOT简介 二、NB-IOT要素 三、代码详解 四、平台端 一、NB-IOT简介 实际上&#xff0c;就是NB-Iot彻底引爆了物联网的&#xff0c;大概2018年左右&#xff0c;NB推广如火如荼&#xff0c;同时广域网、低功耗的LPWAN网络也逐渐传开&#xff0c;现在回头来看&…

Python爬虫爬取中药材价格数据

&#x1f388; 博主&#xff1a;一只程序猿子 &#x1f388; 博客主页&#xff1a;一只程序猿子 博客主页 &#x1f388; 个人介绍&#xff1a;爱好(bushi)编程&#xff01; &#x1f388; 创作不易&#xff1a;喜欢的话麻烦您点个&#x1f44d;和⭐&#xff01; &#x1f388;…

【Leetcode每日一题】 穷举vs暴搜vs深搜vs回溯vs剪枝_全排列 - 全排列(难度⭐⭐)(62)

1. 题目解析 题目链接&#xff1a;46. 全排列 这个问题的理解其实相当简单&#xff0c;只需看一下示例&#xff0c;基本就能明白其含义了。 2.算法原理 回溯算法是一种通过探索所有可能的候选解来找出所有解的算法。当候选解被确认不是一个解&#xff08;或者至少不是最后一…

包装类的认识

前言~&#x1f973;&#x1f389;&#x1f389;&#x1f389; hellohello~&#xff0c;大家好&#x1f495;&#x1f495;&#xff0c;这里是E绵绵呀✋✋ &#xff0c;如果觉得这篇文章还不错的话还请点赞❤️❤️收藏&#x1f49e; &#x1f49e; 关注&#x1f4a5;&#x1…

网络编程 -- 简易TCP网络程序

一 字符串回响 1.1 核心功能 字符串回响程序类似于 echo 指令&#xff0c;客户端向服务器发送消息&#xff0c;服务器在收到消息后会将消息发送给客户端&#xff0c;该程序实现起来比较简单&#xff0c;同时能很好的体现 socket 套接字编程的流程。 1.2 程序结构 这个程序我们…

基于Zookeeper 简单实现分布式任务协调组件

优质博文&#xff1a;IT-BLOG-CN 一、什么是 Zookeeper ZooKeeper是一个分布式的&#xff0c;开放源码的分布式应用程序协调服务&#xff0c;是Google的Chubby一个开源的实现&#xff0c;是Hadoop和Hbase的重要组件。 它是一个为分布式应用提供一致性服务的软件&#xff0c;提…