YOLOv9改进策略 | 添加注意力篇 | 利用ILSVRC冠军得主SENetV1改善网络模型特征提取能力

一、本文介绍

本文给大家带来的改进机制是SENet(Squeeze-and-Excitation Networks)其是一种通过调整卷积网络中的通道关系来提升性能的网络结构。SENet并不是一个独立的网络模型,而是一个可以和现有的任何一个模型相结合的模块(可以看作是一种通道型的注意力机制)。在SENet中,所谓的挤压和激励Squeeze-and-Excitation)操作是作为一个单元添加到传统的卷积网络结构中。这样可以增强模型对通道间关系的捕获,提升整体的特征表达能力,而不需要从头开始设计一个全新的网络架构。因此,SENet可以看作是对现有网络模型的一种改进和增强,本文提供三种使用方式,下面图片为yaml1对应的结构图。。

欢迎大家订阅我的专栏一起学习YOLO!   

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

目录

一、本文介绍

二、SENetV1框架原理

三、SENetV1核心代码

四、手把手教你添加SENetV1网络结构

4.1 细节修改教程

4.1.1 修改一

​4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 SENetV1的yaml文件

4.2.1 SENetV1的yaml文件一

4.2.2 SENetV1的yaml文件二

4.2.3 SENetV1的yaml文件三

4.3 SENetV1运行成功截图

五、本文总结 


二、SENetV1框架原理

论文地址:官方论文地址

代码地址:官方代码地址


SENet(Squeeze-and-Excitation Networks)的主要思想在于通过挤压-激励(SE)块强化了网络对通道间依赖性的建模。这一创新的核心在于自适应地重新校准每个通道的特征响应,显著提升了网络对特征的表示能力。SE块的叠加构成了SENet架构,有效提高了模型在不同数据集上的泛化性。SENet的创新点包括其独特的结构设计,它在增加极少计算成本的情况下,为现有CNN模型带来了显著的性能提升,并在国际图像识别竞赛ILSVRC 2017中取得了突破性的成果

上图展示了一个挤压-激励(Squeeze-and-Excitation, SE)块的结构。输入特征图 X 经过一个变换 F_{tr}后产生特征图 U。然后,特征图U被压缩成一个全局描述子,这是通过全局平均池化 F_{sq}实现的,产生一个通道描述子。这个描述子经过两个全连接层 F_{ex},第一个是降维,第二个是升维,并通过激活函数如ReLU和Sigmoid激活。最后,原始特征图 U与学习到的通道权重 F_{scale}相乘,得到重新校准的特征图 hat{X}。这种结构有助于网络通过学习通道间的依赖性,自适应地强化或抑制某些特征通道。 

上面的图片展示了两种神经网络模块的结构图:Inception模块和残差(ResNet)模块。每个模块都有其标准形式和一个修改形式,对比图融入了Squeeze-and-Excitation (SE)块来提升性能。

左面的部分是原始Inception模块(左)和SE-Inception模块(右)。SE-Inception模块通过全局平均池化和两个全连接层(第一个使用ReLU激活函数,第二个使用Sigmoid函数)来生成通道级权重,然后对输入特征图进行缩放。

右面的部分展示了原始残差模块(左)和SE-ResNet模块(右)。SE-ResNet模块在传统的残差连接之后添加了SE块,同样使用全局平均池化和全连接层来获得通道级权重,并对残差模块的输出进行缩放。

这两个修改版模块都旨在增强网络对特征的重要性评估能力,从而提升整体模型的性能。


三、SENetV1核心代码

下面的代码是MSDA的核心代码,我们将其复制导'ultralytics/nn/modules'目录下,在其中创建一个文件,我这里起名为Dilation然后粘贴进去,其余使用方式看章节四。

import torch
from torch import nndef autopad(k, p=None, d=1):  # kernel, padding, dilation# Pad to 'same' shape outputsif d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))class SELayerV1(nn.Module):def __init__(self, channel, reduction=16):super(SELayerV1, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * y.expand_as(x)class Bottleneck(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, andexpansion."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.SE = SELayerV1(c2)self.add = shortcut and c1 == c2def forward(self, x):"""'forward()' applies the YOLO FPN to input data."""return x + self.SE(self.cv2(self.cv1(x))) if self.add else self.SE(self.cv2(self.cv1(x)))class C3_SENetV1(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))


四、手把手教你添加SENetV1网络结构

4.1 细节修改教程

4.1.1 修改一

我们找到如下的目录'yolov9-main/models'在这个目录下创建一个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。


​4.1.2 修改二

然后新建一个__init__.py文件,然后我们在里面添加一行代码。注意标记一个'.'其作用是标记当前目录。


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加)

注意的添加位置要放在common的导入上面!!!!!

​​​​​


4.1.4 修改四

然后我们找到parse_model方法,按照如下修改->

到此就修改完成了,复制下面的ymal文件即可运行。


4.2 SENetV1的yaml文件

4.2.1 SENetV1的yaml文件一

下面的配置文件为我修改的SENetV1的位置,参数的位置里面什么都不用添加空着就行,大家复制粘贴我的就可以运行,同时我提供多个版本给大家,根据我的经验可能涨点的位置。

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],# conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# conv down[-1, 1, Conv, [256, 3, 2]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# conv down[-1, 1, Conv, [512, 3, 2]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# conv down[-1, 1, Conv, [512, 3, 2]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[[-1, 1, SELayerV1, []],  # 添加一行我们的改进机制# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 11# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 14# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 17 (P3/8-small)# conv-down merge[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)# conv-down merge[-1, 1, Conv, [512, 3, 2]],[[-1, 11], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 23 (P5/32-large)# routing[5, 1, CBLinear, [[256]]], # 24[7, 1, CBLinear, [[256, 512]]], # 25[9, 1, CBLinear, [[256, 512, 512]]], # 26# conv down[0, 1, Conv, [64, 3, 2]],  # 27-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 28-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 29# conv down fuse[-1, 1, Conv, [256, 3, 2]],  # 30-P3/8[[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 32# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 33-P4/16[[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 35# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 36-P5/32[[26, -1], 1, CBFuse, [[2]]], # 37# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38# detect[[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]


4.2.2 SENetV1的yaml文件二

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],# conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# conv down[-1, 1, Conv, [256, 3, 2]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# conv down[-1, 1, Conv, [512, 3, 2]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# conv down[-1, 1, Conv, [512, 3, 2]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)[-1, 1, SELayerV1, []],  # 17 添加一行我们的改进机制# conv-down merge[-1, 1, Conv, [256, 3, 2]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)[-1, 1, SELayerV1, []],  # 21 添加一行我们的改进机制# conv-down merge[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 24 (P5/32-large)[-1, 1, SELayerV1, []],  # 25 添加一行我们的改进机制# routing[5, 1, CBLinear, [[256]]], # 26[7, 1, CBLinear, [[256, 512]]], # 27[9, 1, CBLinear, [[256, 512, 512]]], # 28# conv down[0, 1, Conv, [64, 3, 2]],  # 29-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 30-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 31# conv down fuse[-1, 1, Conv, [256, 3, 2]],  # 32-P3/8[[26, 27, 28, -1], 1, CBFuse, [[0, 0, 0]]], # 33# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 34[-1, 1, SELayerV1, []],  # 35 添加一行我们的改进机制# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 36-P4/16[[27, 28, -1], 1, CBFuse, [[1, 1]]], # 37# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38[-1, 1, SELayerV1, []],  # 39 添加一行我们的改进机制# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 40-P5/32[[28, -1], 1, CBFuse, [[2]]], # 41# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 42[-1, 1, SELayerV1, []],  # 43 添加一行我们的改进机制# detect[[35, 39, 43, 17, 21, 25], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]


4.2.3 SENetV1的yaml文件三

注意此版本的我再大目标,小目标,中目标三个曾的后面添加了一个注意力机制,此版本需要显存较大,可以根据自己的需求增删,如果修改大家要注意修改Detect里面的检测层数。

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],# conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4_SENetV1, [256, 128, 64, 1]],  # 3# conv down[-1, 1, Conv, [256, 3, 2]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4_SENetV1, [512, 256, 128, 1]],  # 5# conv down[-1, 1, Conv, [512, 3, 2]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4_SENetV1, [512, 512, 256, 1]],  # 7# conv down[-1, 1, Conv, [512, 3, 2]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4_SENetV1, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4_SENetV1, [256, 256, 128, 1]],  # 16 (P3/8-small)# conv-down merge[-1, 1, Conv, [256, 3, 2]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4_SENetV1, [512, 512, 256, 1]],  # 19 (P4/16-medium)# conv-down merge[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4_SENetV1, [512, 512, 256, 1]],  # 22 (P5/32-large)# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4_SENetV1, [256, 128, 64, 1]],  # 28# conv down fuse[-1, 1, Conv, [256, 3, 2]],  # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  # elan-2 block[-1, 1, RepNCSPELAN4_SENetV1, [512, 256, 128, 1]],  # 31# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4_SENetV1, [512, 512, 256, 1]],  # 34# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4_SENetV1, [512, 512, 256, 1]],  # 37# detect[[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]


4.3 SENetV1运行成功截图

附上我的运行记录确保我的教程是可用的。 


五、本文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv9改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/1127.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新Java面试题3【2024中级】

互联网大厂面试题 1:阿里巴巴Java面试题 2:阿里云Java面试题-实习生岗 3:腾讯Java面试题-高级 4:字节跳动Java面试题 5:字节跳动Java面试题-大数据方向 6:百度Java面试题 7:蚂蚁金服Java…

PyCharm,终端conda环境无法切换的问题(二个解决方案)

问题 PyCharm终端,环境切换无效,默认始终为base 解决一 Settings->Tools->Terminal->ShellPath,将powershell修改为cmd.exe 解决二 conda config --show在输出中找到 auto_activate_base 的行,发现被设置为 true&#x…

HTML作业

作业1: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><style>.down…

Android Studio Iguana | 2023.2.1配置优化

一. 前言 本篇文章记录最新版本的Android Studio的配置优化&#xff0c;写这篇文章的是由于电脑中的AS工具更新版本覆盖安装后&#xff0c;AS会经常卡死&#xff0c;Debug的时候也经常莫名其妙的断掉&#xff0c;非常影响工作效率&#xff0c;所以重新把配置环境整理一下&#…

11.事件处理

事件处理 我们可以使用 v-on 指令 (简写为 ) 来监听 DOM 事件&#xff0c;并在事件触发时执行对应的 JavaScript。用法&#xff1a;v-on:click"methodName" 或 click"handler" 事件处理器的值可以是 内联事件处理器&#xff1a;事件被触发时执行的内联 J…

[阅读笔记21][RA-CM3]Retrieval-Augmented Multimodal Language Modeling

这篇论文是meta联合斯坦福在23年4月发表的论文&#xff0c;提出了一个使用外部知识检索增强的多模态模型。 这篇模型提出的RA-CM3模型是第一个能够检索并生成图像文本的多模态模型&#xff0c;在图像文本生成任务上优于现有的多模态模型&#xff0c;同时使用更少的训练量。 RA-…

区间图着色问题:贪心算法设计及实现

区间图着色问题&#xff1a;贪心算法设计及实现 1. 问题定义2. 贪心算法设计2.1 活动排序2.2 分配教室2.3 算法终止 3. 伪代码4. C语言实现5. 算法分析6. 结论7. 参考文献 在本文中&#xff0c;我们将探讨如何使用贪心算法解决一个特定的资源分配问题&#xff0c;即区间图着色问…

物联网实战--驱动篇之(九)NB-IOT(BC260)

目录 一、NB-IOT简介 二、NB-IOT要素 三、代码详解 四、平台端 一、NB-IOT简介 实际上&#xff0c;就是NB-Iot彻底引爆了物联网的&#xff0c;大概2018年左右&#xff0c;NB推广如火如荼&#xff0c;同时广域网、低功耗的LPWAN网络也逐渐传开&#xff0c;现在回头来看&…

Python爬虫爬取中药材价格数据

&#x1f388; 博主&#xff1a;一只程序猿子 &#x1f388; 博客主页&#xff1a;一只程序猿子 博客主页 &#x1f388; 个人介绍&#xff1a;爱好(bushi)编程&#xff01; &#x1f388; 创作不易&#xff1a;喜欢的话麻烦您点个&#x1f44d;和⭐&#xff01; &#x1f388;…

【Leetcode每日一题】 穷举vs暴搜vs深搜vs回溯vs剪枝_全排列 - 全排列(难度⭐⭐)(62)

1. 题目解析 题目链接&#xff1a;46. 全排列 这个问题的理解其实相当简单&#xff0c;只需看一下示例&#xff0c;基本就能明白其含义了。 2.算法原理 回溯算法是一种通过探索所有可能的候选解来找出所有解的算法。当候选解被确认不是一个解&#xff08;或者至少不是最后一…

包装类的认识

前言~&#x1f973;&#x1f389;&#x1f389;&#x1f389; hellohello~&#xff0c;大家好&#x1f495;&#x1f495;&#xff0c;这里是E绵绵呀✋✋ &#xff0c;如果觉得这篇文章还不错的话还请点赞❤️❤️收藏&#x1f49e; &#x1f49e; 关注&#x1f4a5;&#x1…

网络编程 -- 简易TCP网络程序

一 字符串回响 1.1 核心功能 字符串回响程序类似于 echo 指令&#xff0c;客户端向服务器发送消息&#xff0c;服务器在收到消息后会将消息发送给客户端&#xff0c;该程序实现起来比较简单&#xff0c;同时能很好的体现 socket 套接字编程的流程。 1.2 程序结构 这个程序我们…

基于Zookeeper 简单实现分布式任务协调组件

优质博文&#xff1a;IT-BLOG-CN 一、什么是 Zookeeper ZooKeeper是一个分布式的&#xff0c;开放源码的分布式应用程序协调服务&#xff0c;是Google的Chubby一个开源的实现&#xff0c;是Hadoop和Hbase的重要组件。 它是一个为分布式应用提供一致性服务的软件&#xff0c;提…

【管理】杨三角模型

企业成功 成功 战略 X 组织能力 1&#xff09;组织能力对于企业的重要性是和战略一样的&#xff1b; 2&#xff09;组织能力必须与战略适配&#xff0c;才能共同造就企业的成功。 员工思维&#xff1a;员工愿不愿意参与战略落地的实践&#xff1f;员工每天所关心、追求和重视的…

【C++】哈希封装map与set

目录 前言&#xff1a; 一&#xff0c;底层哈希结构 1-1&#xff0c;迭代器的封装 1-2&#xff0c;哈希表的封装 二&#xff0c;unordered_map的封装 三&#xff0c;unordered_set的封装 前言&#xff1a; 上一篇文章说明了哈希结构&#xff0c;这一篇文章来说明如何使用…

安装WSL2

PS C:\Users\pc> wsl --set-default-version 2 有关与 WSL 2 关键区别的信息&#xff0c;请访问 https://aka.ms/wsl2操作成功完成。PS C:\Users\pc> wsl --update 正在检查更新。 已安装最新版本的适用于 Linux 的 Windows 子系统。PS C:\Users\pc> wsl --shutdownPS…

PyTorch深度解析:Tensor——神经网络的核心构建块

在深度学习和神经网络的研究与应用中&#xff0c;Tensor&#xff08;张量&#xff09;无疑是一个核心概念。特别是在PyTorch这一强大的深度学习框架中&#xff0c;Tensor更是扮演了举足轻重的角色。本文将深入探讨PyTorch中的Tensor&#xff0c;从其基本定义、特性、操作到实际…

回溯算法练习day.3

39.组合总和 链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 题目描述&#xff1a; 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target &#xff0c;找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 &#xff0c;并以列表形式返…

uniapp Android 插件开发教程

一、下载uniapp提供的SDK Android 离线SDK - 正式版 | uni小程序SDK 二、在uniapp创建一个项目 查看包名&#xff1a;发行--> 原生app 云打包 三、进入dcloud官网 开发者中心 进入 应用管理 --> 我的应用 --> 点击应用名称-->各平台信息-->新增 这里需要这…