代数结构:5、格与布尔代数

16.1 偏序与格

偏序集:设P是集合,P上的二元关系“≤”满足以下三个条件,则称“≤”是P上的偏序关系(或部分序关系)

(1)自反性:a≤a,∀a∈P;

(2)反对称性:∀a,b∈P,若a≤b且b≤a,则a=b;

(3)传递性:∀a,b,c∈P,若a≤b且b≤c,则a≤c;

定义1 格

​ 设 ( L , ⪯ ) (L,\preceq) (L,)为偏序集,如果任意的$a,b\in L 有最小上界与最大下界时,称 有最小上界与最大下界时,称 有最小上界与最大下界时,称L 为 ‘ 格 ‘ ,以 为`格`,以 ,以a\lor b = lub(a,b) ( l e a s t u p p e r b o n d ) 表示 (least upper bond)表示 (leastupperbond)表示a,b 的最小上界, 的最小上界, 的最小上界,a\land b =glb(a,b) ( g r e a t e s t l o w e r b o n d ) 表示 (greatest lower bond)表示 greatestlowerbond)表示a,b$的最大下界。

定义2 覆盖

( L , ⪯ ) (L,\preceq) (L,)为格,如果 a ⪯ b , a ≠ b a\preceq b,a\neq b ab,a=b(记为 a ≺ b a\prec b ab),且不存在 u ∈ L − { a , b } u\in L-\{a,b\} uL{a,b},使 a ≺ u ≺ b a\prec u \prec b aub,则称 a a a覆盖 b b b.

:若 a ≺ b a\prec b ab,如果有 c 1 , ⋯ , c k ∈ L , k ≥ 1 c_1,\cdots,c_k \in L,k\ge 1 c1,,ckL,k1 ,使 c i + 1 c_{i+1} ci+1覆盖 c i ( u i = 1 , 2 , ⋯ , k − 1 ) c_i(ui=1,2,\cdots,k-1) ci(ui=1,2,,k1),且
a = c 1 ≺ c 2 ≺ ⋯ ≺ c k = b a=c_1\prec c_2\prec\cdots\prec c_k = b a=c1c2ck=b
​ 则称 c 1 , ⋯ , c k c_1,\cdots,c_k c1,,ck为连接 a , b a,b a,b的链,如果L中的任意两个元素总有连接它们的链,则称 L L L是离散的。

​ 有限的离散全序集的哈斯图由一条链组成

定义3 完全格

( L ; ≺ ) (L;\prec) (L;)为偏序集,当$\forall A\subseteq L 有最大下界、最小上界时, 有最大下界、最小上界时, 有最大下界、最小上界时,L 显然是格,称为 ‘ 完全格 ‘ , 显然是格,称为`完全格`, 显然是格,称为完全格L 自身的最小上界是整个格 自身的最小上界是整个格 自身的最小上界是整个格L 的最大元,记为 1 ; 的最大元,记为1; 的最大元,记为1L 自身的最小下界为整个格 自身的最小下界为整个格 自身的最小下界为整个格L 的最小元记为 0. 子集 的最小元记为0.子集 的最小元记为0.子集A$可以是有限的,也可以是无限的。

定理1 格的关系运算

( L , ⪯ ) (L,\preceq) (L,)为格,则对任意 a , b ∈ L a,b\in L a,bL

  1. a ≺ a ∨ b , a ∧ b ≺ a a\prec a\lor b ,a\land b \prec a aab,aba
  2. a ⪯ b ⟺ a ∨ b = b a\preceq b \Longleftrightarrow a\lor b =b abab=b
  3. a ⪯ b ⟺ a ∧ b = a a\preceq b \Longleftrightarrow a\land b = a abab=a

画个哈斯图是显然的,或者注意到按照定义,我们有 a ∨ b = l u b ( a , b ) , a ∧ b = g l b ( a , b ) a\lor b=lub(a,b),a\land b = glb(a,b) ab=lub(a,b),ab=glb(a,b),且若 a ⪯ b a\preceq b ab,则 l u b ( a , b ) = b lub(a,b)=b lub(a,b)=b就容易得到了

定理2 格的运算律

  1. 幂等律: a ∧ a = a , a ∨ a = a a\land a = a, a\lor a = a aa=a,aa=a
  2. 交换律: a ∨ b = b ∨ a , a ∧ b = b ∧ a a\lor b=b\lor a,a\land b=b\land a ab=ba,ab=ba
  3. 结合律: a ∨ ( b ∨ c ) = ( a ∨ b ) ∨ c , a ∧ ( b ∧ c ) = ( a ∧ b ) ∧ c a\lor(b\lor c)=(a\lor b )\lor c,a\land(b\land c)=(a\land b)\land c a(bc)=(ab)c,a(bc)=(ab)c
  4. 吸收律: a ∨ ( a ∧ b ) = a , a ∧ ( a ∨ b ) = a a\lor(a\land b)=a,a\land(a\lor b)= a a(ab)=a,a(ab)=a

P211

那么我们可以将 [ L ; ∧ , ∨ ] [L;\land,\lor] [L;,]视为代数系统

引理 1 代数系统L中的等价关系

​ 在 [ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]中二元关系 ∨ , ∧ \lor,\land ,满足上述4条运算律,则 ∀ a , b ∈ L , a ∧ b = a ⟺ a ∨ b = b \forall a,b\in L ,a\land b= a\Longleftrightarrow a\lor b=b a,bL,ab=aab=b

KaTeX parse error: Undefined control sequence: \and at position 38: …row a\lor b =(a\̲a̲n̲d̲ ̲b )\lor b =b(最后一步是吸收律)

a ∨ b = b ⇒ a ∧ b = a ∧ ( a ∨ b ) = a a\lor b =b\Rightarrow a\land b = a\land(a\lor b )=a ab=bab=a(ab)=a

引理2 通过L构造偏序集

​ 在 [ L ; ∧ , ∨ ] [L;\land,\lor] [L;,]中, ∧ , ∨ \land,\lor ,满足4条运算规律,定义关系 ⪯ \preceq 如下: ∀ a , b ∈ L , a ⪯ b \forall a,b \in L ,a\preceq b a,bL,ab,当且仅当 a ∨ b = b a\lor b =b ab=b.则 ( L ; ⪯ ) (L;\preceq) (L;)为偏序集

证明自反性,反对称性,传递性 P211

定理3 引理2中的偏序集是格

证明 a ∨ b = l u b ( a , b ) , a ∧ b = g l b ( a , b ) a\lor b = lub(a,b),a\land b = glb(a,b) ab=lub(a,b),ab=glb(a,b) P211

定义4 格的另一种定义方式

[ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]是一代数系统, ∨ , ∧ \lor,\land ,是定义在 L L L上的二元运算,当其满足 L 1 L_1 L1 L 4 L_4 L4时,称 L L L为格,并称 ∧ \land 为积(交), ∨ \lor 为和(或并)

定理4 保序性

​ 格 [ L ; ∨ , ∧ ] , ∀ a , b , c ∈ L [L;\lor,\land],\forall a,b,c\in L [L;,],a,b,cL,当 b ⪯ c b\preceq c bc时有 a ∧ b ⪯ a ∧ c a\land b \preceq a\land c abac a ∨ b ⪯ a ∨ c a\lor b\preceq a\lor c abac

定义5 子格

[ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]为格, T ≠ ∅ , T ⊆ L T\neq\varnothing,T\subseteq L T=,TL, T T T关于 ∨ , ∧ \lor,\land ,封闭(即 a , b ∈ T , a ∨ b ∈ T , a ∧ b ∈ T a,b\in T,a\lor b \in T,a\land b \in T a,bT,abT,abT)时,称 T T T L L L的子格

​ 注意,当 T T T L L L的子格时, T T T一定是格,但当 T ⊆ L T\subseteq L TL, T T T关于 L L L中的偏序关系 ⪯ \preceq 为格时, T T T不一定是 L L L的子格,因为 T T T中的运算关系可能不同

​ 例如,一个群 G G G的子群全体 S ( G ) S(G) S(G)关于 ⊆ \subseteq 关系所构成的格不是 G G G的幂集关于 ⊆ \subseteq 关系所构成的格的子格,因为子群的并不一定是子群

定义6 格的同态与同构

​ 设 [ L ; ∨ , ∧ ] [L;\lor,\land] [L;,] [ S ; + , ∘ ] [S;+,\circ] [S;+,]为两个格,如果存在映射 φ : L → S , ∀ a , b ∈ L \varphi:L\rightarrow S,\forall a,b\in L φ:LSa,bL,有
φ ( a ∧ b ) = φ ( a ) ∘ φ ( b ) φ ( a ∨ b ) = φ ( a ) + φ ( b ) \varphi(a\land b )=\varphi(a)\circ\varphi(b)\\ \varphi(a\lor b)=\varphi(a)+\varphi(b) φ(ab)=φ(a)φ(b)φ(ab)=φ(a)+φ(b)
​ 则称 φ \varphi φ L L L S S S的同态映射,当 φ ( L ) = S \varphi(L)=S φ(L)=S时(满射),则说两个格同态,当 φ \varphi φ是一一对应(双射),说同构。如果 L = S L=S L=S,则称为自同态和自同构。

定理 5 同态映射是保序的

​ 若 φ \varphi φ是格 L , S L,S L,S间的同态映射,则 φ \varphi φ是同态映射,即 ∀ a , b ∈ L \forall a,b\in L a,bL,若 a ⪯ b a\preceq b ab,则 φ ( a ) ⪯ φ ( b ) \varphi(a)\preceq\varphi(b) φ(a)φ(b)注意不是当且仅当

定理6 同构映射的保序性

a ⪯ b ⟺ φ ( a ) ⪯ φ ( b ) a\preceq b \Longleftrightarrow \varphi(a)\preceq\varphi(b) abφ(a)φ(b)

定理7 对偶原理

  1. P P P是对任意偏序集都为真的一个命题, P ′ P' P是将 P P P中所有 ⪯ , ⪰ \preceq,\succeq ,对换得到的对偶命题,则 P ′ P' P对任意偏序集也为真
  2. P P P是从格 [ B ; ∨ , ∧ ] [B;\lor,\land] [B;,]推出的命题, P ′ P' P是将 P P P ∨ \lor ∧ \land 对换得到的对偶命题,则 P ′ P' P对格 [ B ; ∧ , ∨ ] [B;\land,\lor] [B;,]也为真

偏序反转后,自然从P得到了P‘

16.2 有补格及分配格

定义7 有界格

​ 一个具有最大元1和最小元0的格 [ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]称为有界格

定理8 最大元和最小元的性质

​ 有界格中, ∀ a ∈ L : a ∨ 1 = 1 , a ∧ 0 = 0 , a ∧ 1 = a , a ∨ 0 = a \forall a\in L:a\lor 1 =1,a\land 0 =0,a\land 1 =a,a\lor 0 =a aL:a1=1,a0=0,a1=a,a0=a

定义8 有补格

[ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]为有界格,$\forall a \in L , 若 ,若 ,\exist b\in L , 有 ,有 ,a\lor b =1,a\land b =0 ,则称 ,则称 ,则称b 为 为 a 的 ‘ 补元 ‘ , 记 的`补元`,记 补元,b 为 为 a’ . 若 .若 .L 中的每个元有补元,称 中的每个元有补元,称 中的每个元有补元,称L$为有补格

我们可以发现,对任意格成立分配不等式,即格 [ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]中任意 a , b , c ∈ L a,b,c\in L a,b,cL,有:

  1. a ∨ ( b ∧ c ) ⪯ ( a ∨ b ) ∧ ( a ∨ c ) a\lor (b\land c)\preceq (a\lor b)\land(a\lor c) a(bc)(ab)(ac)
  2. KaTeX parse error: Undefined control sequence: \and at position 34: …and c)\preceq a\̲a̲n̲d̲(b\lor c)

怎么说了,这个不等关系很容易记反,就画哈斯图吧

定义9 分配格

我们可以发现,对任意格成立分配不等式,即格 [ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]中任意 a , b , c ∈ L a,b,c\in L a,b,cL,有:

  1. a ∨ ( b ∧ c ) = ( a ∨ b ) ∧ ( a ∨ c ) a\lor (b\land c)= (a\lor b)\land(a\lor c) a(bc)=(ab)(ac)
  2. KaTeX parse error: Undefined control sequence: \and at position 28: …or(a\land c)= a\̲a̲n̲d̲(b\lor c)

则称格L为分配格

两个典型的非分配格

在这里插入图片描述

​ 只要哈斯图中含有这种子结构,就可以判断它不是分配格

定理9 分配格的判断

[ L ; ∨ , ∧ ] [L;\lor,\land] [L;,]为任意格,则下述条件等价

  1. ∀ a , b , c ∈ L , a ∧ ( b ∨ c ) = ( a ∧ b ) ∨ ( a ∧ c ) \forall a,b,c\in L,a\land(b\lor c)=(a\land b)\lor(a\land c) a,b,cL,a(bc)=(ab)(ac)
  2. ∀ a , b , c ∈ L , a ∨ ( b ∧ c ) = ( a ∨ b ) ∧ ( a ∨ c ) \forall a,b,c\in L,a\lor(b\land c)=(a\lor b)\land(a\lor c) a,b,cL,a(bc)=(ab)(ac)
  3. ∀ a , b , c ∈ L , ( a ∧ b ) ∨ ( b ∧ c ) ∨ ( c ∧ a ) = ( a ∨ b ) ∧ ( b ∨ c ) ∧ ( c ∨ a ) \forall a,b,c\in L,(a\land b)\lor (b\land c)\lor(c\land a)=(a\lor b)\land(b\lor c)\land(c\lor a) a,b,cL,(ab)(bc)(ca)=(ab)(bc)(ca)
  4. 不含 M 5 M_5 M5 N 5 N_5 N5同构的子格

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/10906.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

旅游推荐管理系统(小组项目)

文章目录 前言 一、项目介绍 1. 项目目的 2. 项目意义 2.1 提升旅游体验 2.2 促进旅游业发展 2.3 数据积累与分析 2.4 提升服务品质 2.5 优化资源配置 二、项目结构 1. 主要使用的技术 1.1 若依(Ruoyi)框架 1.2 Vue.js框架 1.3 Ajax 1.4 …

【进程通信】了解信号以及信号的产生

文章目录 0.前言1.信号的基本概念1.1中断1.1.1 软中断1.1.2硬中断 1.2异步1.2.1异步和同步的比较 2.信号的主要用途3.信号的特点4.查看信号4.1Core和Term的区别4.2生成Core文件 5.初识捕捉信号5.1signal函数 6.产生信号的方式6.1.通过终端按键产生信号6.2.调用系统函数向进程发…

国内智能搜索工具实战教程

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

分享10类正规的网上赚钱平台,让你摆脱单一收入

在这个互联网飞速发展的时代,你是否还在为单一的收入来源而焦虑?别担心,今天带你解锁10种网上赚钱的新姿势,让你的收入不再单一,甚至可能翻倍! 1. 文库类:知识的变现 你知道吗?你的…

k8s 数据流向 与 核心概念详细介绍

目录 一 k8s 数据流向 1,超级详细版 2,核心主键及含义 3,K8S 创建Pod 流程 4,用户访问流程 二 Kubernetes 核心概念 1,Pod 1.1 Pod 是什么 1.2 pod 与容器的关系 1.3 pod中容器 的通信 2, …

imx91的uboot编译

一、准备操作 下载半导体厂家的uboot源码 如这里我要下载的是imx91的恩智浦linux芯片bootloader 进入半导体厂家官网 下载源码,略 更新linux源,这里我是替换成清华源 vi /etc/apt/sources.list deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ fo…

【江科大STM32学习笔记】新建工程

1.建立工程文件夹,Keil中新建工程,选择型号 2.工程文件夹里建立Start、Library、User等文件夹,复制固件库里面的文件到工程文件夹 为添加工程文件准备,建文件夹是因为文件比较多需要分类管理,需要用到的文件一定要复…

Web UI自动化测试--PO模式

没有PO实现的测试用例的问题: 重用性低:登录功能重复可维护性差:数据和代码混合可读性差:元素定位方法杂乱(id、xpath、css混杂)可读性差:不易识别操作的含义(特别是css和xpath语法)可维护性差:如果某个元素的属性改了,你要更改多次PO(Page Object Model)页面对象模型…

完全背包问题(c++)

完全背包问题 当前有 N 种物品,第 i 种物品的体积是 ci​,价值是 wi​。 每种物品的数量都是无限的,可以选择任意数量放入背包。 现有容量为 V 的背包,请你放入若干物品,使总体积不超过 V,并且总价值尽可…

YOLOv8+CLIP实现图文特征匹配

本文通过结合YOLOv8s的高效物体检测能力与CLIP的先进图像-文本匹配技术,展示了深度学习在处理和分析复杂多模态数据中的潜力。这种技术的应用不仅限于学术研究,还能广泛应用于工业、商业和日常技术产品中,以实现更智能的人机交互和信息处理。…

新年首站 | 宝兰德教育行业信创新动力发展研讨会顺利召开

近日,宝兰德携手慧点数码、安超云共同举办了教育行业信创新动力发展研讨会。会议邀请了中国人民公安大学、中国戏曲学院、北京航空航天大学、北京理工大学、华北电力大学、中国矿业大学、北京服装学院、北京城市学院等数十所高校信息中心负责人、专家出席了本次会议…

LeetCode 题目 120:三角形最小路径和

作者介绍:10年大厂数据\经营分析经验,现任字节跳动数据部门负责人。 会一些的技术:数据分析、算法、SQL、大数据相关、python,欢迎探讨交流 欢迎加入社区:码上找工作 作者专栏每日更新: LeetCode解锁1000题…

WEB后端复习——javabean与会话cookie、session

JavaBean 是一种符合特定命名约定的 Java 类,它通常用于封装数据。 JavaBean 的主要特点是: 1. 无参构造器:JavaBean 必须有一个公共的(public)无参构造方法,以便于反射时能够创建对象实例。 2. 属性&…

Android的视图显示和管理机制:layout view window WindowManager Canvas Surface

在Android系统中,Layout view window WindowManager Canvas Surface SurfaceFlinger这些组件协同工作,以实现图形的绘制和显示。需要搞明白这些组件是什么时候创建的以及他们之间的结构关系。 从上到下的层级关系:用户在View上进行操作&…

考研踩坑经验分享

文章目录 写在前面自身情况简介自身学习路线优点坑点 学习路线建议1、2和3月份3、4和5月份6、7和8月份9、10月份11、12月份 一些私货建议结尾 写在前面 考研是一件非常有盼头的事,但绝对不是一件容易的事。 如果你不能做好来年三月份出成绩时,坦然接受…

Ubuntu 下使用 Scons 交叉编译嘉楠堪智 CanMV K230 大小核 Coremark 程序

在 Ubuntu 下使用 SCons 进行交叉编译嘉楠堪智 CanMV K230 大小核(不同的玄铁 C908 核心)的 C 程序,以 Coremark 程序为例,顺便测试一下大小核和编译器的性能。 2024年3月14日,嘉楠科技宣布推出了全球首款支持 RISC-V…

# 从浅入深 学习 SpringCloud 微服务架构(十七)--Spring Cloud config(1)

从浅入深 学习 SpringCloud 微服务架构(十七)–Spring Cloud config(1) 一、配置中心的 概述 1、配置中心概述 对于传统的单体应用而言,常使用配置文件来管理所有配置,比如 SpringBoot 的 application.y…

消费金融平台公司如何做大做强自营产品

本文来自于2019年的某次内部分享沟通会,部分敏感内容已做删减。

油泼辣子在食品类别可以申请成商标不!

前阵韩国人在美国申请“chili crunch”油泼辣子作为商标,还准备禁止华人餐馆使用投诉侵权并索赔,普推知产老杨在USPTO上面检索发现,这个人申请的主要是30类方便食品的调味品,商标分类是全球通用的。 商标名称不能申请本类所属的通…

C/C++常用的内置的宏定义

常用的C/C 内置宏 这是我在VS2015下运行的 cout << "file " << __FILE__ << endl;cout << "line " << __LINE__ << endl;cout << "date " << __DATE__ << endl;cout << "…