做题杂记666

[XYCTF2024] 铜匠

题目描述:

from Crypto.Util.number import *
from secrets import flagm = bytes_to_long(flag)
m1 = getRandomRange(1, m)
m2 = getRandomRange(1, m)
m3 = m - m1 - m2def task1():e = 149p = getPrime(512)q = getPrime(512)n = p * qd = inverse(e,(p-1)*(q-1))return (pow(m1, e, n), d >> 222 << 222, n)def task2():e = 65537p = getPrime(1024)q = getPrime(1024)n = p * qreturn (pow(m2, e, n), (p + q) & ((1 << 624) - 1), n)def task3():e = 65537p = getPrime(512)q = getPrime(512)n = p * qreturn (pow(m3, e, n), (p ^ q) >> 200, n)c1, leak1, n1 = task1()
c2, leak2, n2 = task2()
c3, leak3, n3 = task3()
print(c1, leak1, n1)
print(c2, leak2, n2)
print(c3, leak3, n3)
# (89623543982221289730635223555830551523170205418976759060541832483843039074358160566735322009158596405712449020903311144480669706226166537602750967447480664875090686428406188847601970724994074417752345460791736191511081890913041143570455636020205647345764692062144226011846336769477026234106683791286490222089, 138474880017294332349992670187778287774153347391371789199005713563195654993662610111557185709277805165708109047494971468100563949333712521647405765501704478862377527360106399421209690341743821320754482338590671565510629203215009008479290995785318405211007685664887994061938667418220613430135743123498167435264, 146331610798417415036517077006943013321623040860385791423062775325646472298267580898028515394910588437521335092742913111680737790430660749825981979147191282007208147041227246620008377726207734522466015971515317594545750944838673018946440525615131606652748549901880641896940968837669894325535750125282351577689)
# (5473961166821344576614003060897848014482672788904094340704447882490091115468180944569409159343222459801235179587721232166576530621751748850763430788036935832653535110975154800191323351333883661451331971042214143454441651165718504131976920077768864850035471790911190772583977173388975105970866592974077361193822302653046511418190410043729876062517148438923211673300268277037622337403526399584759202097925983596261279676101079771530118525540842499517622478819211528345668513680064744443628779623340175578509413636950545134641050948185944279029949957748464529075830770617236599864271566534714755373562527112224962839980,62964793504732923650344975634773688108135580826064134090114181449607062497690184718845295432644650580930430061411603385577783897575232298084007041511817031640186953023971498914096209984730,20748652069632848434897928314437138341436264859802586939154590237186029244907936870477844563166827587536149170710720365760129683024401957095447466056746469055173897234659911291443605912459271248059341147358511860537769587963189092648473894868209838600346115919726589891777340166174017389513260737891557712152871714337946675533597049874155202056200170954033849176655928144354665553271709442011723088448485570394208728775665739819536229908847043007472178803394055783543378990699834066614262050119443421709878598533329555838915158259138297060574425019923291353077080236769586821808150397875920110335669136563171420068201)
# (34640310217688693418173336791306022698488916505988760907493665070072623574363578354500529023855888624978101429772253437880445815006839767802433777006836665709335479076676231470534690281412388704665083311568028710188940132495410474044569100181764053297307413009214044407982980600917158732129850605715306726034, 3763587651775261955566046684899146246387485307521708557610018711932791630073528010801142052497, 94848869174430082173244966077736519396702141299429965725051314270443078621842166791082354594193554380275167898342497998871366256044865879909218309960595691008663632410356093966762639308253848450178310347612630814852054763933063313537694449475061227647475480417779126252294793767003555255527593551612032661749)

题目分析:
part1:
d高位攻击
在这里插入图片描述

exp:

from tqdm import *
from Crypto.Util.number import *
def get_full_p(p_high, n,d_high,bits):PR.<x> = PolynomialRing(Zmod(n))    f = x + p_highf = f.monic()roots = f.small_roots(X=2^(bits + 4), beta=0.4)  if roots:x0 = roots[0]p = gcd(x0 + p_high, n)return ZZ(p)def find_p_high(d_high, e, n,bits):PR.<X> = PolynomialRing(RealField(1000))for k in tqdm(range(1, e+1)):f=e * d_high * X - (k*n*X + k*X + X-k*X**2 - k*n)results = f.roots()if results:for x in results:p_high = int(x[0]) >> 4 << 4p = get_full_p(p_high, n,d_high,bits)if p and p != 1:return pc1 = 89623543982221289730635223555830551523170205418976759060541832483843039074358160566735322009158596405712449020903311144480669706226166537602750967447480664875090686428406188847601970724994074417752345460791736191511081890913041143570455636020205647345764692062144226011846336769477026234106683791286490222089
leak1 = 138474880017294332349992670187778287774153347391371789199005713563195654993662610111557185709277805165708109047494971468100563949333712521647405765501704478862377527360106399421209690341743821320754482338590671565510629203215009008479290995785318405211007685664887994061938667418220613430135743123498167435264
n1 = 146331610798417415036517077006943013321623040860385791423062775325646472298267580898028515394910588437521335092742913111680737790430660749825981979147191282007208147041227246620008377726207734522466015971515317594545750944838673018946440525615131606652748549901880641896940968837669894325535750125282351577689
e1 = 149
p1 = find_p_high(leak1, e1, n1,222)
q1 = n1 // p1
d1 = inverse(e1,(p1 - 1) * (p1 - 1))
m1 = pow(c1,int(d1),n1)
# m1 = 11775517453863996563134035490381223284801389447022348837092806629482902301042769151917156039535676274713308069533584211081526392912472011090033981642998869

part2:
已知 ( p + q ) 低 624 位 又知道 n = p ∗ q 那么联立 l e a k 2 和 n 2 % 2 624 即可得到 p 或 q 的低位 之后 c o p p e r 一下即可得到完整的 p 或 q 已知(p + q)低624位\\ 又知道n = p * q\\ 那么联立leak2和n2 \% 2^{624}即可得到p或q的低位\\ 之后copper一下即可得到完整的p或q 已知(p+q)624又知道n=pq那么联立leak2n2%2624即可得到pq的低位之后copper一下即可得到完整的pq
思路和d低位攻击差不多
exp:

from Crypto.Util.number import *def get_full_p(p_low, n):PR.<x> = PolynomialRing(Zmod(n))nbits = n.nbits()p_lowbits = p_low.nbits()f = 2^p_lowbits*x + p_lowf = f.monic()roots = f.small_roots(X=2^(nbits//2-p_lowbits), beta=0.4)  if roots:x0 = roots[0]p = gcd(2^p_lowbits*x0 + p_low, n)return ZZ(p)def find_p_low(low, n):X = var('X')results = solve_mod([n == X * (low - X)], 2^low.nbits())for x in results:p_low = ZZ(x[0])p = get_full_p(p_low, n)if p and p != 1:return pc2 = 5473961166821344576614003060897848014482672788904094340704447882490091115468180944569409159343222459801235179587721232166576530621751748850763430788036935832653535110975154800191323351333883661451331971042214143454441651165718504131976920077768864850035471790911190772583977173388975105970866592974077361193822302653046511418190410043729876062517148438923211673300268277037622337403526399584759202097925983596261279676101079771530118525540842499517622478819211528345668513680064744443628779623340175578509413636950545134641050948185944279029949957748464529075830770617236599864271566534714755373562527112224962839980
leak2 = 62964793504732923650344975634773688108135580826064134090114181449607062497690184718845295432644650580930430061411603385577783897575232298084007041511817031640186953023971498914096209984730
n2 = 20748652069632848434897928314437138341436264859802586939154590237186029244907936870477844563166827587536149170710720365760129683024401957095447466056746469055173897234659911291443605912459271248059341147358511860537769587963189092648473894868209838600346115919726589891777340166174017389513260737891557712152871714337946675533597049874155202056200170954033849176655928144354665553271709442011723088448485570394208728775665739819536229908847043007472178803394055783543378990699834066614262050119443421709878598533329555838915158259138297060574425019923291353077080236769586821808150397875920110335669136563171420068201
e2 = 65537
p2 = find_p_low(leak2, n2)
q2 = n2 // p2
d2 = inverse(e2,(p2 - 1) * (q2 - 1))
m2 = pow(c2,d2,n2)
print(m2)
# m2 = 637474741382124491125351127892971159828342019036405954553729272346832023284163998914076056292480317209934960796148267118196288511438260371617371342378683017480560448795

part3:
请参考:
https://tangcuxiaojikuai.xyz/post/342113ee.html
exp:

from gmpy2 import *
c3 = 34640310217688693418173336791306022698488916505988760907493665070072623574363578354500529023855888624978101429772253437880445815006839767802433777006836665709335479076676231470534690281412388704665083311568028710188940132495410474044569100181764053297307413009214044407982980600917158732129850605715306726034
leak3 = 3763587651775261955566046684899146246387485307521708557610018711932791630073528010801142052497
n3 = 94848869174430082173244966077736519396702141299429965725051314270443078621842166791082354594193554380275167898342497998871366256044865879909218309960595691008663632410356093966762639308253848450178310347612630814852054763933063313537694449475061227647475480417779126252294793767003555255527593551612032661749leak3 = leak3 << 200
leak3 = bin(leak3)[2:].zfill(512)
leakbits = 200def findp(pp,qq,l):p_Min = int(pp + (512-l)*"0",2)p_Max = int(pp + (512-l)*"1",2)q_Min = int(qq + (512-l)*"0",2)q_Max = int(qq + (512-l)*"1",2)if(l == 512 - leakbits):R.<x> = PolynomialRing(Zmod(n3))phigh = p_Minf3 = phigh + xroot = f3.small_roots(X=2^leakbits, beta=0.4)if root != []:p3 = phigh + int(root[0])q3 = n3 // p3d = gmpy2.invert(e,(p3-1)*(q3-1))m3 = pow(c3,d,n3)print(f"m3 = {m3}")if (p_Max * q_Max < n3) or (p_Min * q_Min > n3):return# 以下是根据异或来操作的if leak3[l] == '0':findp(pp + '1',qq + '1',l+1)findp(pp + '0',qq + '0',l+1)if leak3[l] == '1':findp(pp + '1',qq + '0',l+1)findp(pp + '0',qq + '1',l+1)findp('1','1',1)
# m3 = 334132319136130454419386550847309794306389604470819859736266178647538718607667083644497296078054806893307642673035506225568447967643224450929477875810797878149197295514

[2023 江苏省数据安全竞赛] hardrsa

来源在此
题目描述:

from Crypto.Util.number import *
from random import randint
# from secret import message
p, q = [getPrime(1024) for _ in range(2)]
n = p * qdef pad(msg: bytes) -> bytes:return msg + long_to_bytes(len(msg) & 0xff) * (2048 // 8 - len(msg) - 1)def f(x: int, poly: list[int]) -> int:return sum([poly[i] * pow(x, i, n) for i in range(len(poly))]) % ndef commit(m: int, d: int, key: int, poly: list[int]) -> (int, int):sig = pow(m, d, n)c1 = (sig + pow(key, 8, n) + pow(key, 4, n) + pow(key, 2, n)) % nc2 = f(key, poly)return c1, c2def reveal(comm: (int, int), e: int, key: int, poly: list[int]) -> int:c1, c2 = commassert f(key, poly) == c2sig = (c1 - pow(key, 8, n) - pow(key, 4, n) - pow(key, 2, n)) % nreturn pow(sig, e, n)def part1(msg):e = 233assert GCD(e, (p - 1) * (q - 1)) == 1m = bytes_to_long(pad(msg))c = pow(m, e, n)print(f"# Part1: RSA-Encrypted Ciphertext\n"f"{e = }\n"f"{n = }\n"f"{c = }\n")def part2(msg):e = getPrime(256)assert GCD(e, (p - 1) * (q - 1)) == 1d = inverse(e, (p - 1) * (q - 1))key = getPrime(1024)poly = [randint(n // 2, n) for _ in range(8)]m = bytes_to_long(msg)comm = commit(m, d, key, poly)print(f"# Part2: RSA-Committed Promise\n"f"{e = }\n"f"{n = }\n"f"{poly = }\n"f"{comm = }\n")part1(message)
part2(message)'''
# Part1: RSA-Encrypted Ciphertext
e = 233
n = 11935450457829533235861673228297207102011152676397253867146913792126035709631838912054379483925100858088716543548565883127607546205725887108101118334914085611884304295616391635635730462010491550855190770776531821441961930152081076014630292188457483421965231052149991813167636622576040955869771100692060798499848216781403839908159869808167642603742236390452605002523104832413884128824863453874477895814675168541067154527938435375815931877307360825011810649184534014412683654903241610167115302439866360069493031086872354910005880773459207712493126679315455220650236256646891830311728264963649315399787003295334546874291
c = 7252592878713436249451954839264355322580930765631177572271016442117341039243270139159572914726052278102731751307948710556102124039673892501351580382026911586520822698910216934337820791611920030598567775355231131126300774119520299748279014958652077682887635170584723744587650744421280998057075011222009042174385778453331646210379693618543179886347307521772868295540264296894711602178922977038080083149136928926845871859677401680541048431032673765061924102033485570287098238695235990854284581798656185853973943961983020641995838344765211070928405487458023474992011192333056478388071341171355197120988215168198599723008# Part2: RSA-Committed Promise
e = 66193637341723367163125702898112480448278699637268148343857725442855402823431
n = 11935450457829533235861673228297207102011152676397253867146913792126035709631838912054379483925100858088716543548565883127607546205725887108101118334914085611884304295616391635635730462010491550855190770776531821441961930152081076014630292188457483421965231052149991813167636622576040955869771100692060798499848216781403839908159869808167642603742236390452605002523104832413884128824863453874477895814675168541067154527938435375815931877307360825011810649184534014412683654903241610167115302439866360069493031086872354910005880773459207712493126679315455220650236256646891830311728264963649315399787003295334546874291
poly = [11717154796621555517773089565161800782497395722578959209529354534025874232277165805913450430518606899030436997688640019197332182511107284797218734095249300649807218465147399703372218739746124711200544753873488683088277396707752681278994522913785476758026448815685216381723435987067431688479748324396207672503845734170132747031467431651462218384749316037680784863900868165022343622041751554333022117572879116218759879246367088427084626950955537463817968031017275910364363695899152710198165120432170787171341528864286158526038651919017107408570791186937519694774479837991365808631767140379749029359380372242375950137980, 9123862087464108309368301961629788915272772896023134293061688494597654503820136260901587831268936385580664649067767056115754724046745958708702235170960467356062328703981921906752172049390790202666123073269199722768061043975957820847564911432200111405506704374689942732871658793810805164611038997319494337357970794059964303933995742679251310010710434981636137595085517852847956640902442517513717087059546226466932055404728069004610675179760781279470558117788079744090471741006843223391295194412058215189490450122125518118132532661928747925982914732441440478529947224247988342993141712946093256348898996486327422944643, 6030603763346983288102354051890376530618029881435881726123892326247756715375950846629522738204125453587401831309679161545839726580035304449416761250948280327548535169936710507270611945843758842074476358246176098954644815210291073632368712607495031631913377358289661882694855436741228045084898247782669601243425453739817361547681943880579046765521731792701727321918301930375236655162783436465648090046259078120078910758575245396369709495063070202433832221772728021708079141746515469950248160534726502810704256703088684677877258573049270790396920638239330550633086994873425126929073220720355594488969185367608970916707, 9716821256832823750824128939107476939193936880337072944057098552215636341970779759899504078211465219351423745606682464111980567519009576095570498485630378890832910178268396634042751260634975171396984879182577992189999471936271429379306815019808996603918680787757713732404409692378153404122817226376865296438358486825612038858671776168645459752591925049260849071890295705474681598072886213619765003334857584781191985867775067185431488903206792188339131394272348988190482038716689478427650052247117559254256426511237932521351563089652047479479797300938563071283204961821455011631287889953996753731046822530037290627603, 11666333796778950070167408874398723214755352342048420236509233384060504228691247439421717776145154660819665260614606719030374746157097188777077905502366283706404249089084254210184487000990590270597382395207166506919474285640547576022841376382228267993104083461046139626378377974880966684427584303435662417721364008851870996677773917720510662526494737368571401785448409850024786090719768664502422761048062510586525467980024015286711938702512216482448086269597385419099772350149085440682892594663347642016624766961661170116360402443166746640256191226904369488864228395770803375247648092252065676886829888128110190309444, 11462478619099457240194769131836026270676403653501558282234968840872201162571883741201212219688281503510052098158124641727050288323198630131726234941868641468115278637960576287497767164456374120707437312761564310114818371263585487215911621560151358932205369221540130826905285545384305252671441989503441136412038093124085709642767025279350701000689026612157516744318724863351212190331852873715100901776905551563639179863329686328110637392713048373928191537946089436183622931782516720136751294476526680955429995943935488708846823839471792834286557115607414856063416087088477870164924987940894347486987836314461869534685, 10653980645418567411513922726616332470333513058407903035252559634113729870896307952345894573596782737100406813700290955080352696027100830934620756512872071900141804524610003605512659517424571217583346011965481480902253618773638355461764615453623374981103761629025970935810383120788534231421966726189585137512500570267960570464567388134331962043004849033375701972321858826974571976630891280420154316273033822618993014775803644483310026324771611118893293874122154993194283048698946653630901390782848148154411901241076544121228997263925606737607053972716874433300890330943412885434902240474709761223385352589083032128765, 10333595582803945043794471549604060392892058436121718182876444277996436845270662996790111238164033031406294804268590041670028232929474601883136059254591114821360112812291665655800401763541770303414040301090112758998311872983916961222346986656419661796203670733971009015803316347392237554891453769853704667050186727532712938810529943794137758599829378190680080965770951235622571154549350843468969908612054253674618037317066245764371279129776346266283585071808588302272504846382220877158974560863342504477881966924796683784677005619901829479041024077089614741081459831955279053575767736159622130675063748407061992052183]
comm = (10564327899571559803556847534640695884330979746141728381165331691371976198263843416751526335144564535035858053981517608346244582495510435781708514545410097533789005704048949775023251844189682064338358890427739102350645579483449459063227298628580813444257846278172112872070476617876388978632815732351176279459891770448714218081580878962036244554120215500496692247248020278906488898449151646331624912262205484811525189621806737849258225367134474296238235621600330628737449413319226263301240126177028279222960781645584351180328940683511286708507993883536602761937997289906562917482293638052704507924397633424367496240964, 4387528105610677136382722097833805553385843892958316305467187670486199250717569327341072891778254838060236323831885558131143386943636641524724956236926177315970135623681789134933521529522559017273929375073606157451115549453689875510487618793700227395725601364775309166607448269494881759434610031015774783174435486283695473704010367742281324624499239551547535691273360430539739519609019906949849114055192830821910951442964212279996201740422429695430649919698399420612775831374301153008912976259171898412262142433496285240507322095993886385920265570293733256427242653393188675651145896591757150999795300092930798687689)
'''

记录解法:
已知:
c 1 ≡ m d + k 8 + k 4 + k 2 ( m o d n ) c_1\equiv m^d+k^8+k^4+k^2\pmod{\begin{array}{c}n\\\end{array}} c1md+k8+k4+k2(modn)
c 2 ≡ p o l y 0 + p o l y 1 ⋅ k + p o l y 2 ⋅ k 2 + p o l y 3 ⋅ k 3 + p o l y 4 ⋅ k 4 + p o l y 5 ⋅ k 5 + p o l y 6 ⋅ k 6 + p o l y 7 ⋅ k 7 ( m o d n ) c_2\equiv poly_0+poly_1\cdot k+poly_2\cdot k^2+poly_3\cdot k^3+poly_4\cdot k^4+poly_5\cdot k^5+poly_6\cdot k^6+poly_7\cdot k^7\mathrm{~(mod~}n) c2poly0+poly1k+poly2k2+poly3k3+poly4k4+poly5k5+poly6k6+poly7k7 (mod n)
可以得到三个等式:
1. f 1 ( k ) ≡ ∑ i = 0 7 p o l y i k i − c 2 ( m o d n ) 1. f_1(k) \equiv\sum_{i=0}^7poly_ik^i-c_2\mathrm{~(mod~}\mathrm{~}n) 1.f1(k)i=07polyikic2 (mod  n)
2. f 2 ( m ) ≡ ( p a d ( m ) ) 233 − c ( m o d n ) 2. f_2(m)\equiv(pad(m))^{233}-c\mathrm{~(mod~}n) 2.f2(m)(pad(m))233c (mod n)
3. m ≡ ( c 1 − k 8 − k 4 − k 2 ) e ( m o d n ) 3. m\equiv(c_1-k^8-k^4-k^2)^e\mathrm{~(mod~}\mathrm{~}n) 3.m(c1k8k4k2)e (mod  n)
直接把 3 式带到 2 式中会导致 f 2 的度过高,所以优化一下 已知 f 1 ( k ) = k n ,又知道在模 k n 下满足的式子在模 n 下一定成立,故把 m 带入 f 2 再模上多项式 f 1 这样 f 2 的度就低于 8 ,然后联立它和 f 1 差不多就能求出 k 了 ( 里面的 p a d d i n g 部分浅爆一下就行 ) 直接把3式带到2式中会导致f_2的度过高,所以优化一下\\ 已知f_1(k) = kn,又知道在模kn下满足的式子在模n下一定成立,故把m带入f_2再模上多项式f_1\\ 这样f_2的度就低于8,然后联立它和f_1差不多就能求出k了\\ (里面的padding部分浅爆一下就行) 直接把3式带到2式中会导致f2的度过高,所以优化一下已知f1(k)=kn,又知道在模kn下满足的式子在模n下一定成立,故把m带入f2再模上多项式f1这样f2的度就低于8,然后联立它和f1差不多就能求出k(里面的padding部分浅爆一下就行)

( 不模 f 1 , 直接模 n 出不来结果,试过,不过我也不知道原因 ) (不模f_1,直接模n出不来结果,试过,不过我也不知道原因) (不模f1,直接模n出不来结果,试过,不过我也不知道原因)

exp:

# sage
from Crypto.Util.number import *
e1 = 233
c = 7252592878713436249451954839264355322580930765631177572271016442117341039243270139159572914726052278102731751307948710556102124039673892501351580382026911586520822698910216934337820791611920030598567775355231131126300774119520299748279014958652077682887635170584723744587650744421280998057075011222009042174385778453331646210379693618543179886347307521772868295540264296894711602178922977038080083149136928926845871859677401680541048431032673765061924102033485570287098238695235990854284581798656185853973943961983020641995838344765211070928405487458023474992011192333056478388071341171355197120988215168198599723008
e2 = 66193637341723367163125702898112480448278699637268148343857725442855402823431
n = 11935450457829533235861673228297207102011152676397253867146913792126035709631838912054379483925100858088716543548565883127607546205725887108101118334914085611884304295616391635635730462010491550855190770776531821441961930152081076014630292188457483421965231052149991813167636622576040955869771100692060798499848216781403839908159869808167642603742236390452605002523104832413884128824863453874477895814675168541067154527938435375815931877307360825011810649184534014412683654903241610167115302439866360069493031086872354910005880773459207712493126679315455220650236256646891830311728264963649315399787003295334546874291
poly = [11717154796621555517773089565161800782497395722578959209529354534025874232277165805913450430518606899030436997688640019197332182511107284797218734095249300649807218465147399703372218739746124711200544753873488683088277396707752681278994522913785476758026448815685216381723435987067431688479748324396207672503845734170132747031467431651462218384749316037680784863900868165022343622041751554333022117572879116218759879246367088427084626950955537463817968031017275910364363695899152710198165120432170787171341528864286158526038651919017107408570791186937519694774479837991365808631767140379749029359380372242375950137980, 9123862087464108309368301961629788915272772896023134293061688494597654503820136260901587831268936385580664649067767056115754724046745958708702235170960467356062328703981921906752172049390790202666123073269199722768061043975957820847564911432200111405506704374689942732871658793810805164611038997319494337357970794059964303933995742679251310010710434981636137595085517852847956640902442517513717087059546226466932055404728069004610675179760781279470558117788079744090471741006843223391295194412058215189490450122125518118132532661928747925982914732441440478529947224247988342993141712946093256348898996486327422944643, 6030603763346983288102354051890376530618029881435881726123892326247756715375950846629522738204125453587401831309679161545839726580035304449416761250948280327548535169936710507270611945843758842074476358246176098954644815210291073632368712607495031631913377358289661882694855436741228045084898247782669601243425453739817361547681943880579046765521731792701727321918301930375236655162783436465648090046259078120078910758575245396369709495063070202433832221772728021708079141746515469950248160534726502810704256703088684677877258573049270790396920638239330550633086994873425126929073220720355594488969185367608970916707, 9716821256832823750824128939107476939193936880337072944057098552215636341970779759899504078211465219351423745606682464111980567519009576095570498485630378890832910178268396634042751260634975171396984879182577992189999471936271429379306815019808996603918680787757713732404409692378153404122817226376865296438358486825612038858671776168645459752591925049260849071890295705474681598072886213619765003334857584781191985867775067185431488903206792188339131394272348988190482038716689478427650052247117559254256426511237932521351563089652047479479797300938563071283204961821455011631287889953996753731046822530037290627603, 11666333796778950070167408874398723214755352342048420236509233384060504228691247439421717776145154660819665260614606719030374746157097188777077905502366283706404249089084254210184487000990590270597382395207166506919474285640547576022841376382228267993104083461046139626378377974880966684427584303435662417721364008851870996677773917720510662526494737368571401785448409850024786090719768664502422761048062510586525467980024015286711938702512216482448086269597385419099772350149085440682892594663347642016624766961661170116360402443166746640256191226904369488864228395770803375247648092252065676886829888128110190309444, 11462478619099457240194769131836026270676403653501558282234968840872201162571883741201212219688281503510052098158124641727050288323198630131726234941868641468115278637960576287497767164456374120707437312761564310114818371263585487215911621560151358932205369221540130826905285545384305252671441989503441136412038093124085709642767025279350701000689026612157516744318724863351212190331852873715100901776905551563639179863329686328110637392713048373928191537946089436183622931782516720136751294476526680955429995943935488708846823839471792834286557115607414856063416087088477870164924987940894347486987836314461869534685, 10653980645418567411513922726616332470333513058407903035252559634113729870896307952345894573596782737100406813700290955080352696027100830934620756512872071900141804524610003605512659517424571217583346011965481480902253618773638355461764615453623374981103761629025970935810383120788534231421966726189585137512500570267960570464567388134331962043004849033375701972321858826974571976630891280420154316273033822618993014775803644483310026324771611118893293874122154993194283048698946653630901390782848148154411901241076544121228997263925606737607053972716874433300890330943412885434902240474709761223385352589083032128765, 10333595582803945043794471549604060392892058436121718182876444277996436845270662996790111238164033031406294804268590041670028232929474601883136059254591114821360112812291665655800401763541770303414040301090112758998311872983916961222346986656419661796203670733971009015803316347392237554891453769853704667050186727532712938810529943794137758599829378190680080965770951235622571154549350843468969908612054253674618037317066245764371279129776346266283585071808588302272504846382220877158974560863342504477881966924796683784677005619901829479041024077089614741081459831955279053575767736159622130675063748407061992052183]
comm = (10564327899571559803556847534640695884330979746141728381165331691371976198263843416751526335144564535035858053981517608346244582495510435781708514545410097533789005704048949775023251844189682064338358890427739102350645579483449459063227298628580813444257846278172112872070476617876388978632815732351176279459891770448714218081580878962036244554120215500496692247248020278906488898449151646331624912262205484811525189621806737849258225367134474296238235621600330628737449413319226263301240126177028279222960781645584351180328940683511286708507993883536602761937997289906562917482293638052704507924397633424367496240964, 4387528105610677136382722097833805553385843892958316305467187670486199250717569327341072891778254838060236323831885558131143386943636641524724956236926177315970135623681789134933521529522559017273929375073606157451115549453689875510487618793700227395725601364775309166607448269494881759434610031015774783174435486283695473704010367742281324624499239551547535691273360430539739519609019906949849114055192830821910951442964212279996201740422429695430649919698399420612775831374301153008912976259171898412262142433496285240507322095993886385920265570293733256427242653393188675651145896591757150999795300092930798687689)R.<x,s> = PolynomialRing(Zmod(n))
f1 = 0
for i in range(len(poly)):f1 += poly[i] * x ^ i
f1 -= comm[1]
# 求m模f1下的e次方
f = comm[0] - x ^ 8 - x ^ 4 - x ^ 2
F = 1
for i in bin(e2)[2:][::-1]:if i == '1':F = (F * f) % f1f = (f * f) % f1for i in range(1,255):print(i)f = deepcopy(F)# 爆破一下填充,带入f2,求233次f = f * 256 ^ (255 - i) + bytes_to_long(long_to_bytes(i) * (255 - i))FF = 1for i in bin(e1)[2:][::-1]:if i == '1':FF = FF * f % f1f = f * f % f1f2 = FF - c# 求f1 和 f2的结式,得到(x - k)ans = Ideal([f1,f2]).groebner_basis()if ans != [1]:print(ans)break
# python
from Crypto.Util.number import *
e2 = 66193637341723367163125702898112480448278699637268148343857725442855402823431
n = 11935450457829533235861673228297207102011152676397253867146913792126035709631838912054379483925100858088716543548565883127607546205725887108101118334914085611884304295616391635635730462010491550855190770776531821441961930152081076014630292188457483421965231052149991813167636622576040955869771100692060798499848216781403839908159869808167642603742236390452605002523104832413884128824863453874477895814675168541067154527938435375815931877307360825011810649184534014412683654903241610167115302439866360069493031086872354910005880773459207712493126679315455220650236256646891830311728264963649315399787003295334546874291
poly = [11717154796621555517773089565161800782497395722578959209529354534025874232277165805913450430518606899030436997688640019197332182511107284797218734095249300649807218465147399703372218739746124711200544753873488683088277396707752681278994522913785476758026448815685216381723435987067431688479748324396207672503845734170132747031467431651462218384749316037680784863900868165022343622041751554333022117572879116218759879246367088427084626950955537463817968031017275910364363695899152710198165120432170787171341528864286158526038651919017107408570791186937519694774479837991365808631767140379749029359380372242375950137980, 9123862087464108309368301961629788915272772896023134293061688494597654503820136260901587831268936385580664649067767056115754724046745958708702235170960467356062328703981921906752172049390790202666123073269199722768061043975957820847564911432200111405506704374689942732871658793810805164611038997319494337357970794059964303933995742679251310010710434981636137595085517852847956640902442517513717087059546226466932055404728069004610675179760781279470558117788079744090471741006843223391295194412058215189490450122125518118132532661928747925982914732441440478529947224247988342993141712946093256348898996486327422944643, 6030603763346983288102354051890376530618029881435881726123892326247756715375950846629522738204125453587401831309679161545839726580035304449416761250948280327548535169936710507270611945843758842074476358246176098954644815210291073632368712607495031631913377358289661882694855436741228045084898247782669601243425453739817361547681943880579046765521731792701727321918301930375236655162783436465648090046259078120078910758575245396369709495063070202433832221772728021708079141746515469950248160534726502810704256703088684677877258573049270790396920638239330550633086994873425126929073220720355594488969185367608970916707, 9716821256832823750824128939107476939193936880337072944057098552215636341970779759899504078211465219351423745606682464111980567519009576095570498485630378890832910178268396634042751260634975171396984879182577992189999471936271429379306815019808996603918680787757713732404409692378153404122817226376865296438358486825612038858671776168645459752591925049260849071890295705474681598072886213619765003334857584781191985867775067185431488903206792188339131394272348988190482038716689478427650052247117559254256426511237932521351563089652047479479797300938563071283204961821455011631287889953996753731046822530037290627603, 11666333796778950070167408874398723214755352342048420236509233384060504228691247439421717776145154660819665260614606719030374746157097188777077905502366283706404249089084254210184487000990590270597382395207166506919474285640547576022841376382228267993104083461046139626378377974880966684427584303435662417721364008851870996677773917720510662526494737368571401785448409850024786090719768664502422761048062510586525467980024015286711938702512216482448086269597385419099772350149085440682892594663347642016624766961661170116360402443166746640256191226904369488864228395770803375247648092252065676886829888128110190309444, 11462478619099457240194769131836026270676403653501558282234968840872201162571883741201212219688281503510052098158124641727050288323198630131726234941868641468115278637960576287497767164456374120707437312761564310114818371263585487215911621560151358932205369221540130826905285545384305252671441989503441136412038093124085709642767025279350701000689026612157516744318724863351212190331852873715100901776905551563639179863329686328110637392713048373928191537946089436183622931782516720136751294476526680955429995943935488708846823839471792834286557115607414856063416087088477870164924987940894347486987836314461869534685, 10653980645418567411513922726616332470333513058407903035252559634113729870896307952345894573596782737100406813700290955080352696027100830934620756512872071900141804524610003605512659517424571217583346011965481480902253618773638355461764615453623374981103761629025970935810383120788534231421966726189585137512500570267960570464567388134331962043004849033375701972321858826974571976630891280420154316273033822618993014775803644483310026324771611118893293874122154993194283048698946653630901390782848148154411901241076544121228997263925606737607053972716874433300890330943412885434902240474709761223385352589083032128765, 10333595582803945043794471549604060392892058436121718182876444277996436845270662996790111238164033031406294804268590041670028232929474601883136059254591114821360112812291665655800401763541770303414040301090112758998311872983916961222346986656419661796203670733971009015803316347392237554891453769853704667050186727532712938810529943794137758599829378190680080965770951235622571154549350843468969908612054253674618037317066245764371279129776346266283585071808588302272504846382220877158974560863342504477881966924796683784677005619901829479041024077089614741081459831955279053575767736159622130675063748407061992052183]
comm = (10564327899571559803556847534640695884330979746141728381165331691371976198263843416751526335144564535035858053981517608346244582495510435781708514545410097533789005704048949775023251844189682064338358890427739102350645579483449459063227298628580813444257846278172112872070476617876388978632815732351176279459891770448714218081580878962036244554120215500496692247248020278906488898449151646331624912262205484811525189621806737849258225367134474296238235621600330628737449413319226263301240126177028279222960781645584351180328940683511286708507993883536602761937997289906562917482293638052704507924397633424367496240964, 4387528105610677136382722097833805553385843892958316305467187670486199250717569327341072891778254838060236323831885558131143386943636641524724956236926177315970135623681789134933521529522559017273929375073606157451115549453689875510487618793700227395725601364775309166607448269494881759434610031015774783174435486283695473704010367742281324624499239551547535691273360430539739519609019906949849114055192830821910951442964212279996201740422429695430649919698399420612775831374301153008912976259171898412262142433496285240507322095993886385920265570293733256427242653393188675651145896591757150999795300092930798687689)
k = n - 11935450457829533235861673228297207102011152676397253867146913792126035709631838912054379483925100858088716543548565883127607546205725887108101118334914085611884304295616391635635730462010491550855190770776531821441961930152081076014630292188457483421965231052149991813167636622576040955869771100692060798499693960184446731314918105642113926187107833337161524510120603332593906360209185930338647472196619213478020597693556397507575990827712746479989636430658680762894157884135805985796209803194138514597265621623815104440785237530400299161579990533910282443770714101522282163174088074769666145653173062992665886703602
mm = pow((int(comm[0]) - pow(k,8,n) - pow(k,4,n) - pow(k,2,n)) % n,e2,n)
print(long_to_bytes(mm))
# flag{7c95453a-e577-40d8-9ad0-993655b83b69}

另一种解法
利用伴随矩阵
1. f 1 ( k ) ≡ ∑ i = 0 7 p o l y i k i − c 2 ( m o d n ) 1. f_1(k) \equiv\sum_{i=0}^7poly_ik^i-c_2\mathrm{~(mod~}\mathrm{~}n) 1.f1(k)i=07polyikic2 (mod  n)
2. f 2 ≡ m d + k 8 + k 4 + k 2 − c 1 ( m o d n ) 2. f_2\equiv m^d + k^8 + k^4 + k^2 - c_1 \pmod n 2.f2md+k8+k4+k2c1(modn)
m d 次数太高,我们直接将其设为变量,于是有: 3. f 2 ( m d , k ) ≡ m d + k 8 + k 4 + k 2 − c 1 两式联立得到关于 m d 的多项式 h ,测试结果中得到的 h 的度是 7 故有 h ( m d ) = m d 7 + c o e 6 ∗ m d 6 + . . . + c o e 1 ∗ m d + c o e 0 又知道 m = ( m d ) e ,故我们把 h ( m d ) 中每项升个 e 次方,就能得到一个关于 m 的多项式 和 f ( m ) ≡ ( p a d ( m ) ) 233 − c ( m o d n ) 来个 G C D 便能得到 x − m m^d次数太高,我们直接将其设为变量,于是有:\\ 3. f_2(md,k) \equiv md + k^8 + k^4 + k^2 - c_1\\ 两式联立得到关于md的多项式h,测试结果中得到的h的度是7\\ 故有h(md) = md^7 + coe_6 * md^6 + ... + coe_1 * md + coe_0\\ 又知道m = (md)^e,故我们把h(md)中每项升个e次方,就能得到一个关于m的多项式\\ 和f(m)\equiv(pad(m))^{233}-c\mathrm{~(mod~}n)来个GCD便能得到x - m md次数太高,我们直接将其设为变量,于是有:3.f2(md,k)md+k8+k4+k2c1两式联立得到关于md的多项式h,测试结果中得到的h的度是7故有h(md)=md7+coe6md6+...+coe1md+coe0又知道m=(md)e,故我们把h(md)中每项升个e次方,就能得到一个关于m的多项式f(m)(pad(m))233c (mod n)来个GCD便能得到xm

如何实现?利用伴随矩阵 companion_matrix

我们求出当前多项式 h ( m d ) h(md) h(md)的伴随矩阵 C ( h ) C( h) C(h) C ( h ) C(h) C(h)的特征多项式就是 h ( m d ) h(md) h(md) C ( h ) C(h) C(h)的特征值就是 h ( m d ) h(md) h(md)的解,那么 m d m^d md就会是 C ( h ) C(h) C(h)的对角矩阵上的一个元素。
因此我们求一个 C ( h ) e C(h)^e C(h)e,那么其对角矩阵上的一个元素就会是 ( m d ) e ≡ m ( m o d n ) ( m^d) ^e\equiv m \pmod n (md)em(modn),也就意味着新特征多项式的一个解是 m m m

所以,我们只需要对 h ( m d ) h(md) h(md)的伴随矩阵求一个e次幂,再取其特征多项式即可得到m
he = (companion_matrix(h) ** e).charpoly()

from Crypto.Util.number import *
from tqdm import *def GCD(g1, g2):while g2:g1, g2 = g2, g1 % g2return g1.monic()e1 = 233
c1 = 7252592878713436249451954839264355322580930765631177572271016442117341039243270139159572914726052278102731751307948710556102124039673892501351580382026911586520822698910216934337820791611920030598567775355231131126300774119520299748279014958652077682887635170584723744587650744421280998057075011222009042174385778453331646210379693618543179886347307521772868295540264296894711602178922977038080083149136928926845871859677401680541048431032673765061924102033485570287098238695235990854284581798656185853973943961983020641995838344765211070928405487458023474992011192333056478388071341171355197120988215168198599723008
e2 = 66193637341723367163125702898112480448278699637268148343857725442855402823431
n = 11935450457829533235861673228297207102011152676397253867146913792126035709631838912054379483925100858088716543548565883127607546205725887108101118334914085611884304295616391635635730462010491550855190770776531821441961930152081076014630292188457483421965231052149991813167636622576040955869771100692060798499848216781403839908159869808167642603742236390452605002523104832413884128824863453874477895814675168541067154527938435375815931877307360825011810649184534014412683654903241610167115302439866360069493031086872354910005880773459207712493126679315455220650236256646891830311728264963649315399787003295334546874291
poly = [11717154796621555517773089565161800782497395722578959209529354534025874232277165805913450430518606899030436997688640019197332182511107284797218734095249300649807218465147399703372218739746124711200544753873488683088277396707752681278994522913785476758026448815685216381723435987067431688479748324396207672503845734170132747031467431651462218384749316037680784863900868165022343622041751554333022117572879116218759879246367088427084626950955537463817968031017275910364363695899152710198165120432170787171341528864286158526038651919017107408570791186937519694774479837991365808631767140379749029359380372242375950137980, 9123862087464108309368301961629788915272772896023134293061688494597654503820136260901587831268936385580664649067767056115754724046745958708702235170960467356062328703981921906752172049390790202666123073269199722768061043975957820847564911432200111405506704374689942732871658793810805164611038997319494337357970794059964303933995742679251310010710434981636137595085517852847956640902442517513717087059546226466932055404728069004610675179760781279470558117788079744090471741006843223391295194412058215189490450122125518118132532661928747925982914732441440478529947224247988342993141712946093256348898996486327422944643, 6030603763346983288102354051890376530618029881435881726123892326247756715375950846629522738204125453587401831309679161545839726580035304449416761250948280327548535169936710507270611945843758842074476358246176098954644815210291073632368712607495031631913377358289661882694855436741228045084898247782669601243425453739817361547681943880579046765521731792701727321918301930375236655162783436465648090046259078120078910758575245396369709495063070202433832221772728021708079141746515469950248160534726502810704256703088684677877258573049270790396920638239330550633086994873425126929073220720355594488969185367608970916707, 9716821256832823750824128939107476939193936880337072944057098552215636341970779759899504078211465219351423745606682464111980567519009576095570498485630378890832910178268396634042751260634975171396984879182577992189999471936271429379306815019808996603918680787757713732404409692378153404122817226376865296438358486825612038858671776168645459752591925049260849071890295705474681598072886213619765003334857584781191985867775067185431488903206792188339131394272348988190482038716689478427650052247117559254256426511237932521351563089652047479479797300938563071283204961821455011631287889953996753731046822530037290627603, 11666333796778950070167408874398723214755352342048420236509233384060504228691247439421717776145154660819665260614606719030374746157097188777077905502366283706404249089084254210184487000990590270597382395207166506919474285640547576022841376382228267993104083461046139626378377974880966684427584303435662417721364008851870996677773917720510662526494737368571401785448409850024786090719768664502422761048062510586525467980024015286711938702512216482448086269597385419099772350149085440682892594663347642016624766961661170116360402443166746640256191226904369488864228395770803375247648092252065676886829888128110190309444, 11462478619099457240194769131836026270676403653501558282234968840872201162571883741201212219688281503510052098158124641727050288323198630131726234941868641468115278637960576287497767164456374120707437312761564310114818371263585487215911621560151358932205369221540130826905285545384305252671441989503441136412038093124085709642767025279350701000689026612157516744318724863351212190331852873715100901776905551563639179863329686328110637392713048373928191537946089436183622931782516720136751294476526680955429995943935488708846823839471792834286557115607414856063416087088477870164924987940894347486987836314461869534685, 10653980645418567411513922726616332470333513058407903035252559634113729870896307952345894573596782737100406813700290955080352696027100830934620756512872071900141804524610003605512659517424571217583346011965481480902253618773638355461764615453623374981103761629025970935810383120788534231421966726189585137512500570267960570464567388134331962043004849033375701972321858826974571976630891280420154316273033822618993014775803644483310026324771611118893293874122154993194283048698946653630901390782848148154411901241076544121228997263925606737607053972716874433300890330943412885434902240474709761223385352589083032128765, 10333595582803945043794471549604060392892058436121718182876444277996436845270662996790111238164033031406294804268590041670028232929474601883136059254591114821360112812291665655800401763541770303414040301090112758998311872983916961222346986656419661796203670733971009015803316347392237554891453769853704667050186727532712938810529943794137758599829378190680080965770951235622571154549350843468969908612054253674618037317066245764371279129776346266283585071808588302272504846382220877158974560863342504477881966924796683784677005619901829479041024077089614741081459831955279053575767736159622130675063748407061992052183]
comm = (10564327899571559803556847534640695884330979746141728381165331691371976198263843416751526335144564535035858053981517608346244582495510435781708514545410097533789005704048949775023251844189682064338358890427739102350645579483449459063227298628580813444257846278172112872070476617876388978632815732351176279459891770448714218081580878962036244554120215500496692247248020278906488898449151646331624912262205484811525189621806737849258225367134474296238235621600330628737449413319226263301240126177028279222960781645584351180328940683511286708507993883536602761937997289906562917482293638052704507924397633424367496240964, 4387528105610677136382722097833805553385843892958316305467187670486199250717569327341072891778254838060236323831885558131143386943636641524724956236926177315970135623681789134933521529522559017273929375073606157451115549453689875510487618793700227395725601364775309166607448269494881759434610031015774783174435486283695473704010367742281324624499239551547535691273360430539739519609019906949849114055192830821910951442964212279996201740422429695430649919698399420612775831374301153008912976259171898412262142433496285240507322095993886385920265570293733256427242653393188675651145896591757150999795300092930798687689)P = Zmod(n)["md,k"]
md, k = P.gens()
# 或者:
# P.<md, k> = PolynomialRing(Zmod(n))
# md, k = P.gens()f = md + k**8 + k**4 + k**2 - comm[0]
g = sum([poly[i] * k**i for i in range(len(poly))]) - comm[1]
h = f.sylvester_matrix(g, k).det().univariate_polynomial().monic()
h_coefficients = h.coefficients()
# 里面f.sylvester_matrix(g, k) = g.sylvester_matrix(f, k)final = (companion_matrix(h_coefficients) ** e2).charpoly() # md伴随矩阵e次幂的特征根# padding部分爆破
for i in trange(1,255):f1 = ((x * 256 ^ (255 - i) + bytes_to_long(long_to_bytes(i) * (255 - i))) ^ e1 - c).univariate_polynomial() # 创建一元多项式mm = GCD(M, f1)print(mm)if mm not in ZZ:m = int(-mm.monic()[0])print(long_to_bytes(m))break 
# flag{7c95453a-e577-40d8-9ad0-993655b83b69}

[2024HZNUCTF 决赛] ezmath

题目描述:

from hashlib import md5
from Crypto.Util.number import *
from secret import flag,a,b,cn = getPrime(512)assert n == a**2 + b**2 * c**2assert flag == "HZNUCTF{"+ md5(str(a+b+c).encode()).hexdigest() + "}"
# n =10025528183022843297972893037004274434565776775894832972425335533530501283241358450613164144702044922014938018419602889154405001125828093273180244377985061

题目分析:
我还在那推来着,结果是用库函数直接梭

from hashlib import md5
n =10025528183022843297972893037004274434565776775894832972425335533530501283241358450613164144702044922014938018419602889154405001125828093273180244377985061
a,b,c = three_squares(n) # 用于找到一个给定整数的三个平方数的和
flag = "HZNUCTF{"+ md5(str(a+b+c).encode()).hexdigest() + "}"
print(flag)
# HZNUCTF{55d1c6086bf65f7416ae547ca4adaaa0}

浅记一下
关键词:d高位攻击,d低位攻击,剪枝,伴随矩阵 companion_matrix,groebner_basis,sylvester_matrix,three_squares

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/10418.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis基础面试知识点(1)

相比于C字符串&#xff0c;SDS的优势&#xff1a; O(1)获取字符串的长度不会缓冲区溢出减少修改字符串时所需的内存重新分配的次数&#xff08;空间预分配、惰性空间释放&#xff09;二进制API安全&#xff08;通过len获取长度&#xff09;兼容部分C字符串函数 Redis hash策略…

干货分享:AI知识库-从认识到搭建

随着知识库的出现&#xff0c;人工智能也逐渐加入进来&#xff0c;形成了“AI知识库”。也许将AI和知识库拆开&#xff0c;你能理解是什么意思&#xff0c;但是当两个词结合在一起时&#xff0c;你又真的能理解它是做什么的吗&#xff1f;这就是今天我们要来聊的话题&#xff0…

全网最详细IOS系统APP上架教程(二)

上一篇讲解了IOS系统APP上架注册苹果开发者账号需要的材料、邓白氏编码的注册等&#xff0c;本文将继续讲解后续流程。 详细步骤 三、申请苹果开发者账号 在苹果手机上安装Apple Developer 打开Apple Developer&#xff0c;用之前注册好的Apple ID登录&#xff0c;输入姓名身…

J1019基于SpringBoot的护肤品推荐系统设计与实现(源码+包运行+技术指导)

项目描述 临近学期结束&#xff0c;开始毕业设计制作&#xff0c;你还在做java程序网络编程&#xff0c;期末作业&#xff0c;老师的作业要求觉的困难吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。今天给大家介绍一篇基于SpringBoot的护…

QT+网络调试助手+TCP服务器

一、UI界面设计 二、单线程 代码设计 1、 查找合法的本地地址&#xff0c;用于当作服务器的IP地址 #include <QThread> #include <QTcpSocket> #include <QNetworkInterface> #include <QMessageBox>QList<QHostAddress> ipAddressesList QNe…

排序算法之希尔排序(缩小增量排序)

希尔排序是插入排序的优化&#xff0c;如果不了解插入排序可以看排序算法之插入排序-CSDN博客这篇博客&#xff0c;希尔排序算法通过对原始数据集使用 gap 分组的方法&#xff0c;先将数据分组进行插入排序&#xff0c;随着排序的进行&#xff0c;逐渐减小 gap 的值&#xff0c…

怎样的跨网软件,可以实现网间数据的安全收发?

网络隔离已是较为常见的网络安全保护措施&#xff0c;比如防火墙、网闸、VLAN&#xff0c;云桌面虚拟环境等方面进行隔离。像一些科技研发型企业&#xff0c;不仅仅是内外网隔离&#xff0c;甚至还划分办公网、研发网、测试网、生产网等&#xff0c;防止研发资料、设计资料等敏…

Redis——缓存雪崩、缓存穿透、缓存击穿

在项目中&#xff0c;通常会使用数据库比如 MySQL 存储应用数据&#xff0c;但是当数据太多之后&#xff0c;比如多了几十万条或上百万条的商品信息&#xff0c;这个时候查询商品数据的速度会很慢&#xff0c;影响用户体验。此时一般我们会选择将部分商品信息缓存起来&#xff…

JavaSE基础小知识Ⅱ(很容易错!!!)

1. 变量被final修饰后不能再指向其他对象&#xff0c;但可以重写 如果是引用变量被final修饰&#xff0c;那么的确如此&#xff1b; 基本变量不能重写 2. 下列代码的输出结果是&#xff1f; public class Test {static {int x 5; }static int x,y; public static void ma…

java--io流(二)

一、打印流&#xff08;PrintStream[字节]、PrintWriter[字符]&#xff09; &#xff08;基本上可以代替前面所学的字节、字符输出流&#xff09;&#xff0c;二者关于打印数据功能相同&#xff08;都方便且高效&#xff09;&#xff0c;但是关于数据写出不同&#xff0c;前者…

数据的均匀化分割算法(网格划分法、四叉树法(含C++代码))

数据的均匀化分割主要是指在分割过程中尽可能均匀地将数据点分布在各个子区域中&#xff0c;以保持数据分布的平衡和优化数据结构的性能。以下是几种可以实现数据均匀化分割的方法&#xff1a; 一. 网格划分法 1. 基本概念 虽然传统的网格划分法不是动态调整的&#xff0c;但通…

3款超好用的智能AI写作神器,不容错过!

在当代写作领域&#xff0c;人工智能&#xff08;AI&#xff09;辅助的写作工具已显著地改变了创作过程&#xff0c;不仅优化了撰写效率还提高了内容质量。为了协助读者更好地了解并利用这些先进的工具&#xff0c;本文将详细评述3种卓越的AI驱动的写作辅助软件&#xff0c;每一…

AJ65SBT2B-64DA 三菱CC-Link D/A转换模块

AJ65SBT2B-64DA 是将数字值(16位有符号BIN数据)转换为模拟值(电压或电流)的模块。 AJ65SBT2B-64DA参数说明&#xff1a;4通道&#xff1b;输入分辨率0~12000&#xff0c;-12000~12000&#xff0c;-16000~16000&#xff1b;输出DC-10~10V&#xff0c;DC0~20mA&#xff1b;转换速…

028.实现 strStr()

题意 给你两个字符串 haystack 和 needle &#xff0c;请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标&#xff08;下标从 0 开始&#xff09;。如果 needle 不是 haystack 的一部分&#xff0c;则返回 -1 。 难度 简单 示例 例 1 输入&#xff1a;hays…

【Win10点击任务栏刷屏,卡死转圈(亲测有效)】

计算机疑难杂症001 Win10点击任务栏刷屏&#xff0c;卡死转圈(亲测有效)1、问题状况2、问题原因3、问题解决 Win10点击任务栏刷屏&#xff0c;卡死转圈(亲测有效) 1、问题状况 在偶然间&#xff0c;发现任务栏点不动了&#xff0c;点击无反应&#xff0c;再多点击几次&#x…

网络爬虫概述与原理

网络爬虫概述与原理 网络爬虫简介狭义上理解功能上理解常见用途总结 网络爬虫分类通用网络爬虫聚焦网络爬虫增量网络爬虫深度网络爬虫 网络爬虫流程网络爬虫采集策略深度有限搜索策略广度优先搜索策略 网络爬虫简介 通过有效地获取网络资源的方式&#xff0c;便是网络爬虫。网…

Threejs Shader动态修改Merge合并几何体中单个Mesh的颜色

目录 Merge合并 现象 思路 实现 为单个geometry添加映射 通过id检索Merge后的Geometry映射属性&#xff0c;获取顶点坐标 onBeforeCompile修改编译前材质的着色代码 编译前材质的顶点着色代码 编译前材质的片元着色代码 着色器代码 注意 效果 Merge合并 mergeBuf…

【GESP】2023年12月图形化二级 -- 小杨报数

小杨报数 【题目描述】 小杨需要从 1 1 1到 N N N报数。在报数过程中&#xff0c;小杨希望跳过 M M M的倍数。例如&#xff0c;如果 N 5 N5 N5&#xff0c; M 2 M2 M2&#xff0c;那么小杨就需要依次报出 1 1 1&#xff0c; 3 3 3&#xff0c; 5 5 5。 默认小猫角色和白色背…

数据库提权

1.此时实验需要用到的软件&#xff1a; &#xff08;1&#xff09;phpStudy该程序包集成最新的ApachePHPMySQL phpMyAdminZendOptimizer,一次性安装,无须配置即可使用,是非常方便、好用的PHP调试环境.该程序不仅包括PHP调试环境,还包括了开发工具、开发手册等.总之学习PHP只需…