数据的均匀化分割算法(网格划分法、四叉树法(含C++代码))

数据的均匀化分割主要是指在分割过程中尽可能均匀地将数据点分布在各个子区域中,以保持数据分布的平衡和优化数据结构的性能。以下是几种可以实现数据均匀化分割的方法:

一. 网格划分法

1. 基本概念

        虽然传统的网格划分法不是动态调整的,但通过设计可以实现均匀的空间分割。例如,可以根据数据点的分布密度来调整网格的划分粒度,使得每个网格单元内包含的数据点数量尽量均匀。

        具体的,二维网格划分是一种对二维空间进行均匀分割的技术,用于将这种空间划分为多个小的、有时是规则的区域或单元,称为“网格”或“格子”。在图像处理中,二维网格划分可以用于将图像划分成小块进行局部分析或并行处理,从而加速图像处理任务如滤波、特征检测等。

2. 示例

  我有一组特征点存储在 std::vector<cv::KeyPoint> 类型的变量 vToDistributeKeys 中。这些特征点位于一张大小为宽1276像素、高378像素的图片上。为了在二维空间上实现点的均匀分布,我需要将图片分割成一个6x6的网格(共36个方块)。在每个方块内,我希望只保留具有最大置信度的特征点,并删除该方块内的其他点。下面是实现这一功能的具体C++代码。

#include <iostream>
#include <vector>
#include <opencv2/core/types.hpp>// 将特征点按网格均匀分布,每个网格只保留置信度最高的特征点
std::vector<cv::KeyPoint> distributeAndFilterKeys(const std::vector<cv::KeyPoint>& keypoints, int width, int height, int gridRows, int gridCols) {// 计算每个网格的尺寸int cellWidth = width / gridCols;int cellHeight = height / gridRows;// 初始化网格,用于存储每个网格的最高置信度的特征点std::vector<std::vector<cv::KeyPoint>> grid(gridRows, std::vector<cv::KeyPoint>(gridCols));// 遍历所有特征点for (const auto& keypoint : keypoints) {int gridX = keypoint.pt.x / cellWidth;int gridY = keypoint.pt.y / cellHeight;// 确保网格索引不越界if (gridX >= gridCols) gridX = gridCols - 1;if (gridY >= gridRows) gridY = gridRows - 1;// 检查当前网格是否已有特征点,或者当前特征点置信度是否更高if (!grid[gridY][gridX].empty() && grid[gridY][gridX][0].response < keypoint.response) {grid[gridY][gridX][0] = keypoint;} else if (grid[gridY][gridX].empty()) {grid[gridY][gridX].push_back(keypoint);}}// 收集所有网格中的最佳特征点std::vector<cv::KeyPoint> filteredKeyPoints;for (int y = 0; y < gridRows; ++y) {for (int x = 0; x < gridCols; ++x) {if (!grid[y][x].empty()) {filteredKeyPoints.push_back(grid[y][x][0]);}}}return filteredKeyPoints;
}int main() {// 假设的特征点数据std::vector<cv::KeyPoint> keypoints = {{cv::Point2f(100, 50), 1.f, -1, 0.8},{cv::Point2f(120, 60), 1.f, -1, 0.9},{cv::Point2f(130, 55), 1.f, -1, 0.95},// 添加更多点以测试};// 图片尺寸和网格配置int width = 1276;int height = 378;int gridRows = 6;int gridCols = 6;// 处理特征点std::vector<cv::KeyPoint> filteredKeyPoints = distributeAndFilterKeys(keypoints, width, height, gridRows, gridCols);// 输出结果for (const auto& kp : filteredKeyPoints) {std::cout << "Keypoint at (" << kp.pt.x << ", " << kp.pt.y << ") with response: " << kp.response << std::endl;}return 0;
}

二. 四叉树均匀化与非极大值抑制结合使用

在实际应用中,可以先对ORB特征点进行四叉树均匀化,然后再对每个子区域内的特征点进行非极大值抑制。这样可以在保证特征点分布均匀性的同时,提高特征点的质量和稳定性,最终得到更优的特征点集合。

1. 四叉树的基本概念

        在图像中,某些区域可能存在大量的特征点,而其他区域可能只有很少的特征点。这种不均匀分布会影响特征点的代表性和匹配效果。

        首先把一幅图案或一个幅面分割成多个分区或者部分。如果某个子区域内的特征点数量少于某个预设阈值,或者已经达到了分割的最小尺度,则这个子区域不再进行分割。如果特征点过于密集,则继续将这个区域分割成四个更小的子区域,并递归地对每个子区域进行同样的分割过程,直至每个子区域内的特征点数量满足预设条件。

        通过控制划分的停止条件(如特征点数量少于阈值、达到最小分割尺寸等),可以在保证足够的特征点总数的同时,让特征点在图像的不同区域内尽可能均匀分布。

        在划分完成后,每个子区域内可能包含多个特征点。为了进一步提高均匀性和代表性,可以在每个子区域内只保留响应值最大的特征点,去除其他的特征点。

2. 非极大值抑制

        非极大值抑制是一种常用的特征点后处理方法,主要用于去除临近区域内响应值较低的特征点,保留局部最大的特征点。其基本原理是,对于每个特征点,检查其周围邻域内是否存在响应值更大的特征点。如果存在,则将当前特征点去除;如果不存在,则保留当前特征点。

3. 示例

      一组特征点存储在 std::vector<cv::KeyPoint> 类型的变量 vToDistributeKeys 中。这些特征点分布在一张宽为1276像素、高为378像素的图片上。要求将图片分割成至少25个区域。

#include <opencv2/opencv.hpp>
#include <vector>
#include <algorithm>// 定义四叉树节点结构体
struct QuadTreeNode {cv::Rect rect;  // 节点代表的区域std::vector<cv::KeyPoint> keypoints;  // 节点内的特征点QuadTreeNode* children[4];  // 子节点指针QuadTreeNode(cv::Rect _rect) : rect(_rect) {for (int i = 0; i < 4; i++) {children[i] = nullptr;}}
};// 递归建立四叉树
void buildQuadTree(QuadTreeNode* node, const std::vector<cv::KeyPoint>& keypoints, int minPoints, int maxLevel, int level) {if (level >= maxLevel || node->keypoints.size() <= minPoints) {return;}// 将当前节点划分为四个子区域int halfWidth = node->rect.width / 2;int halfHeight = node->rect.height / 2;cv::Rect childRects[4] = {cv::Rect(node->rect.x, node->rect.y, halfWidth, halfHeight),cv::Rect(node->rect.x + halfWidth, node->rect.y, halfWidth, halfHeight),cv::Rect(node->rect.x, node->rect.y + halfHeight, halfWidth, halfHeight),cv::Rect(node->rect.x + halfWidth, node->rect.y + halfHeight, halfWidth, halfHeight)};// 为每个子区域创建子节点for (int i = 0; i < 4; i++) {node->children[i] = new QuadTreeNode(childRects[i]);}// 将特征点分配到子节点中for (const auto& keypoint : node->keypoints) {for (int i = 0; i < 4; i++) {if (node->children[i]->rect.contains(keypoint.pt)) {node->children[i]->keypoints.push_back(keypoint);break;}}}// 递归建立子节点的四叉树for (int i = 0; i < 4; i++) {buildQuadTree(node->children[i], node->children[i]->keypoints, minPoints, maxLevel, level + 1);}
}// 非极大值抑制
void nonMaximumSuppression(std::vector<cv::KeyPoint>& keypoints, float radius) {std::vector<cv::KeyPoint> nmsKeypoints;std::sort(keypoints.begin(), keypoints.end(), [](const cv::KeyPoint& a, const cv::KeyPoint& b) {return a.response > b.response;});std::vector<bool> mask(keypoints.size(), true);for (size_t i = 0; i < keypoints.size(); i++) {if (mask[i]) {nmsKeypoints.push_back(keypoints[i]);for (size_t j = i + 1; j < keypoints.size(); j++) {if (cv::norm(keypoints[i].pt - keypoints[j].pt) <= radius) {mask[j] = false;}}}}keypoints = nmsKeypoints;
}// 四叉树均匀化结合非极大值抑制
void quadTreeUniformNMS(std::vector<cv::KeyPoint>& keypoints, int minPoints, int maxLevel, float nmsRadius) {// 创建根节点QuadTreeNode* root = new QuadTreeNode(cv::Rect(0, 0, 1276, 378));root->keypoints = keypoints;// 建立四叉树buildQuadTree(root, keypoints, minPoints, maxLevel, 0);// 对每个叶子节点进行非极大值抑制std::vector<cv::KeyPoint> uniformKeypoints;std::function<void(QuadTreeNode*)> traverseQuadTree = [&](QuadTreeNode* node) {if (node->children[0] == nullptr) {nonMaximumSuppression(node->keypoints, nmsRadius);uniformKeypoints.insert(uniformKeypoints.end(), node->keypoints.begin(), node->keypoints.end());} else {for (int i = 0; i < 4; i++) {traverseQuadTree(node->children[i]);}}};traverseQuadTree(root);keypoints = uniformKeypoints;// 释放内存std::function<void(QuadTreeNode*)> deleteQuadTree = [&](QuadTreeNode* node) {if (node->children[0] != nullptr) {for (int i = 0; i < 4; i++) {deleteQuadTree(node->children[i]);delete node->children[i];}}};deleteQuadTree(root);delete root;
}int main() {std::vector<cv::KeyPoint> vToDistributeKeys;// ... 初始化 vToDistributeKeys ...int minPoints = 1;  // 每个区域最少特征点数量int maxLevel = 5;  // 最大分割层数float nmsRadius = 10.0f;  // 非极大值抑制半径quadTreeUniformNMS(vToDistributeKeys, minPoints, maxLevel, nmsRadius);// ... 使用均匀化后的特征点 vToDistributeKeys ...return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/10401.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3款超好用的智能AI写作神器,不容错过!

在当代写作领域&#xff0c;人工智能&#xff08;AI&#xff09;辅助的写作工具已显著地改变了创作过程&#xff0c;不仅优化了撰写效率还提高了内容质量。为了协助读者更好地了解并利用这些先进的工具&#xff0c;本文将详细评述3种卓越的AI驱动的写作辅助软件&#xff0c;每一…

Langchain-Chatchat 部署实践

Langchain-Chatchat 部署实践 LangChain-Chatchat (原 Langchain-ChatGLM)&#xff0c;基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现&#xff0c;开源、可离线部署的检索增强生成(RAG)大模型知识库项目。 一种利用 langchain 思想实现的基于本地知识库的问答应用&a…

对于FileUpload控件的一些bug

我写的程序&#xff0c;问题出现的也很神奇&#xff0c;就是我在上传已经存在在我指定目录下的就可以成功&#xff0c;如果不存在&#xff0c;上传仍是可以成功的&#xff0c;但是就会不显示&#xff0c;但是你重启服务器的时候又会再次显示。这种问题出现的原因我们就需要了解…

项目环境准备

在正式开始项目的环境准备前&#xff0c;先简单介绍这个项目。 先简单介绍一下该项目的技术栈 技术栈 基础工具环境&#xff1a;JDK17或JDK21IDEA2023(全新改版)Maven3.9Linux服务器 微服务技术&#xff1a;新版SpringCloudAlibaba全家桶SpringBoot3.XNacos2.xMybatisPlusMy…

AJ65SBT2B-64DA 三菱CC-Link D/A转换模块

AJ65SBT2B-64DA 是将数字值(16位有符号BIN数据)转换为模拟值(电压或电流)的模块。 AJ65SBT2B-64DA参数说明&#xff1a;4通道&#xff1b;输入分辨率0~12000&#xff0c;-12000~12000&#xff0c;-16000~16000&#xff1b;输出DC-10~10V&#xff0c;DC0~20mA&#xff1b;转换速…

028.实现 strStr()

题意 给你两个字符串 haystack 和 needle &#xff0c;请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标&#xff08;下标从 0 开始&#xff09;。如果 needle 不是 haystack 的一部分&#xff0c;则返回 -1 。 难度 简单 示例 例 1 输入&#xff1a;hays…

【找最长重复子串长度】

你会得到一个DNA序列&#xff1a;一个由字符A、C、G和T组成的字符串。你的任务是找到序列中最长的重复次数。这是一个最大长度的子字符串&#xff0c;仅包含一种类型的字符。 输入 唯一的输入行包含 n&#xff08;1 ≤ n ≤ 10 的字符串6&#xff09; 字符。 输出 打印一个整数…

【Win10点击任务栏刷屏,卡死转圈(亲测有效)】

计算机疑难杂症001 Win10点击任务栏刷屏&#xff0c;卡死转圈(亲测有效)1、问题状况2、问题原因3、问题解决 Win10点击任务栏刷屏&#xff0c;卡死转圈(亲测有效) 1、问题状况 在偶然间&#xff0c;发现任务栏点不动了&#xff0c;点击无反应&#xff0c;再多点击几次&#x…

Ubuntu编译ftdi_sio

为了解决Ubuntu插入FTDI设备可能出现没有ttyUSB*设备的问题。可以通过命令看一下结果&#xff1a; dmesg | grep usb 例如发现错误&#xff1a; ftdi_sio: Unknown symbol usb_serial_handle_sysrq_char (err -2) 这种错误有可能是因为模块是为不同版本的内核编译的&#xf…

网络爬虫概述与原理

网络爬虫概述与原理 网络爬虫简介狭义上理解功能上理解常见用途总结 网络爬虫分类通用网络爬虫聚焦网络爬虫增量网络爬虫深度网络爬虫 网络爬虫流程网络爬虫采集策略深度有限搜索策略广度优先搜索策略 网络爬虫简介 通过有效地获取网络资源的方式&#xff0c;便是网络爬虫。网…

移动端 3060 6G 安装配置 TensorFlow 和 Pytorch(高版本)

目录 前置条件硬件条件 检查方法解决方法Python3.7GPU 系统驱动CUDA11.2cudnn8.1.1 GPU 在 Python 中的驱动cudatoolkit11.3.1cudnn8.2.1 Tensorflowtensorflow2.10.0 Pytorchpytorch1.10.0 结果 前置条件 硬件条件 R7-6800H RTX3060&#xff08;移动端&#xff09; 检查方法…

Threejs Shader动态修改Merge合并几何体中单个Mesh的颜色

目录 Merge合并 现象 思路 实现 为单个geometry添加映射 通过id检索Merge后的Geometry映射属性&#xff0c;获取顶点坐标 onBeforeCompile修改编译前材质的着色代码 编译前材质的顶点着色代码 编译前材质的片元着色代码 着色器代码 注意 效果 Merge合并 mergeBuf…

算法提高之魔板

算法提高之魔板 核心思想&#xff1a;最短路模型 将所有状态存入队列 更新步数 同时记录前驱状态 #include <iostream>#include <cstring>#include <algorithm>#include <unordered_map>#include <queue>using namespace std;string start&qu…

【GESP】2023年12月图形化二级 -- 小杨报数

小杨报数 【题目描述】 小杨需要从 1 1 1到 N N N报数。在报数过程中&#xff0c;小杨希望跳过 M M M的倍数。例如&#xff0c;如果 N 5 N5 N5&#xff0c; M 2 M2 M2&#xff0c;那么小杨就需要依次报出 1 1 1&#xff0c; 3 3 3&#xff0c; 5 5 5。 默认小猫角色和白色背…

数据库提权

1.此时实验需要用到的软件&#xff1a; &#xff08;1&#xff09;phpStudy该程序包集成最新的ApachePHPMySQL phpMyAdminZendOptimizer,一次性安装,无须配置即可使用,是非常方便、好用的PHP调试环境.该程序不仅包括PHP调试环境,还包括了开发工具、开发手册等.总之学习PHP只需…

Android 逆向

一、apk 查壳工具 ApkScan-PKID 相关APK文件可以在 豌豆荚 官网下载 ApkScan-PKID查壳工具 下载 - 简书 (jianshu.com) 二、脱壳工具&#xff1a;frida 1、Android端配置 frida-server&#xff1a; 该步骤需要使用到 adb&#xff0c;操作Android文件 Releases frida/frid…

SCADE 开发环境介绍

SCADE Suite 中的"SCADE"为"安全关键应用开发环境"的缩写。需说明的是&#xff0c;在时效性方面&#xff0c;下面的描述反映的是发展至2010年左右的情况。更详细的内容&#xff0c;可参考《Formal Methods - Industrial Use from Model to the Code》(ISBN…

对话NVIDIA英伟达:AI已照进现实 | 最新快讯

文 | MetaPost NVIDIA 创始人兼首席执行官黄仁勋在 GTC 2024 主题演讲上表示&#xff1a;下一波 AI 浪潮将是 AI 对物理世界的学习。 当下&#xff0c;全球范围内价值超过50万亿美金的行业正在竞相实现数字化&#xff0c;数字孪生技术正在赋能千行百业。NVIDIA Omniverse 中国…

TriDet: Temporal Action Detection with Relative Boundary Modeling

标题&#xff1a;TriDet&#xff1a;采用相对边界建模的时间动作检测 原文链接&#xff1a;TriDet: Temporal Action Detection With Relative Boundary Modeling (thecvf.com)https://openaccess.thecvf.com/content/CVPR2023/papers/Shi_TriDet_Temporal_Action_Detection_W…

性能分析:如何用互斥锁打造高效Java应用

1. 多线程环境下的原子性挑战 1.1 理解原子性和数据竞争 在多线程应用程序中&#xff0c;原子性是指一系列操作要么全部执行&#xff0c;要么全部不执行&#xff0c;没有中间状态。若多个线程同时读写共享变量&#xff0c;则可能出现争用条件&#xff08;race condition&…