凸优化理论学习一|最优化及凸集的基本概念

文章目录

  • 一、优化问题
    • (一)数学优化
    • (二)凸优化
  • 二、凸集
    • (一)一些标准凸集
    • (二)保留凸性的运算
    • (三)正常锥和广义不等式
    • (四)分离和支撑超平面


一、优化问题

(一)数学优化

从本质上讲,人工智能的目标就是最优化——在复杂环境中与多体交互中做出最优决策。几乎所有的人工智能问题都会归结为一个优化问题。

  • 优化目标:minimize f 0 ( x ) f_0(x) f0(x)
  • 约束条件:
    • 非等式约束: f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq0,i=1,...,m fi(x)0i=1,...,m
    • 等式约束: g i ( x ) = 0 , i = 1 , . . . , m g_i(x)=0,i=1,...,m gi(x)=0i=1,...,m

将最优化问题用于求解最佳决策时, x x x代表决策,约束用于限制决策或对结果施加条件
将最优化问题用于求解最优模型时, x x x 表示模型中的参数,约束对模型参数提出要求(例如,非负性)

最优化问题一般情况下不能得到完全的解决,但是可以尝试近似地解决它,而且通常无伤大雅。这个问题的例外情况是:凸优化问题。

一般非凸问题的传统技术通常会涉及到一定的妥协:

  • 局部优化方法(非线性规划)
    • 在其附近的可行点中找到一个使 f 0 f_0 f0 最小的点
    • 可以处理大问题,例如神经网络训练
    • 需要初始猜测,并且通常需要算法参数微调
    • 不提供有关找到的点有多次优的信息
  • 全局优化方法
    • 找到(全局)解决方案
    • 最坏情况的复杂性随着问题的规模呈指数级增长
    • 通常基于解决凸子问题

(二)凸优化

凸优化问题是特殊形式的优化问题,包括线性规划 (LP)、二次规划 (QP) 等,我们通常能够可靠、高效地解决这些问题。

  • 优化目标:minimize f 0 ( x ) f_0(x) f0(x)
  • 约束条件:
    • 非等式约束: f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq0,i=1,...,m fi(x)0i=1,...,m
    • 等式约束: A x = b Ax=b Ax=b

凸优化问题与最优化问题的对比:

  • 凸优化问题的等式约束是线性的
  • f 0 , . . . , f m f_0,..., f_m f0,...,fm是凸的: θ ∈ [ 0 , 1 ] , f i ( θ x + ( 1 − θ ) y ) ≤ θ f i ( x ) + ( 1 − θ ) f i ( y ) \theta \in [0,1],f_i(\theta x+(1-\theta)y)\leq\theta f_i(x)+(1-\theta)f_i(y) θ[0,1],fi(θx+(1θ)y)θfi(x)+(1θ)fi(y)

二、凸集

(一)一些标准凸集

仿射集包含通过集合中任意两个不同点的线(通过 x 1 x_1 x1 x 2 x_2 x2两点的线: x = θ x 1 + ( 1 − θ ) x 2 , θ ∈ R x=\theta x_1+(1-\theta)x_2,\theta \in R x=θx1+(1θ)x2,θR

  • 函数形式为f=Ax+b,则称函数是仿射的,即线性函数加常数的形式。
  • 比如线性方程组的解 { x ∣ A x = b } \{x |Ax = b\} {xAx=b},并且每个仿射集都可以表示为线性方程组的解集
    在这里插入图片描述

凸集包含集合中任意两点之间的线段( x 1 x_1 x1 x 2 x_2 x2两点间的线段: x = θ x 1 + ( 1 − θ ) x 2 , 0 ≤ θ ≤ 1 x=\theta x_1+(1-\theta)x_2,0\leq\theta\leq1 x=θx1+(1θ)x2,0θ1

  • 凸集满足对于 x 1 , x 2 ∈ C , 0 ≤ θ ≤ 1 x_1,x_2\in C,0\leq\theta\leq1 x1,x2C,0θ1,有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C
  • 以下为一个凸集和两个非凸集的示意:
    在这里插入图片描述

为什么 x = θ x 1 + ( 1 − θ ) x 2 x=\theta x_1+(1-\theta)x_2 x=θx1+(1θ)x2可以表示任意两点连接线段的所有点?将上式展开得:
x = θ x 1 + ( 1 − θ ) x 2 = θ x 1 + x 2 − θ x 2 = θ ( x 1 − x 2 ) + x 2 x=\theta x_1+(1-\theta)x_2=\theta x_1+x_2-\theta x_2=\theta(x_1-x_2)+x_2 x=θx1+(1θ)x2=θx1+x2θx2=θ(x1x2)+x2
在这里插入图片描述

凸包: S 中所有点的凸组合的集合( x 1 , . . . , x k x_1,...,x_k x1,...,xk的凸组合: x = θ 1 x 1 + θ 2 x 2 + . . . + θ k x k x=\theta_1 x_1+\theta_2 x_2+...+\theta_k x_k x=θ1x1+θ2x2+...+θkxk,其中 θ 1 + . . . + θ k = 1 , θ i ≥ 0 \theta_1+...+\theta_k =1,\theta_i \geq 0 θ1+...+θk=1,θi0
在这里插入图片描述
凸锥体: 包含集合中点的所有圆锥组合的集合( x 1 x_1 x1 x 2 x_2 x2的圆锥组合: x = θ 1 x 1 + θ 2 x 2 x=\theta_1 x_1+\theta_2 x_2 x=θ1x1+θ2x2,且 θ 1 ≥ 0 , θ 2 ≥ 0 \theta_1\geq0,\theta_2\geq0 θ10,θ20

在这里插入图片描述

超平面: 形式为 { x ∣ a T x = b } \{x | a^T x = b\} {xaTx=b}的集合,其中 a ≠ 0 a ≠ 0 a=0半空间: 形式为 { x ∣ a T x ≤ b } \{x | a^T x \leq b\} {xaTxb}的集合,其中 a ≠ 0 a ≠ 0 a=0。(a是法向量,超平面是仿射和凸的;半空间是凸的)
在这里插入图片描述

欧几里得球: B ( x c , r ) = { x ∣ ∣ ∣ x − x c ∣ ∣ 2 ≤ r } = { x c + r u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } B(x_c,r)=\{x|\ ||x-x_c||_2\leq r\} = \{x_c+ru|\ ||u||_2\leq1\} B(xc,r)={x ∣∣xxc2r}={xc+ru ∣∣u21}

椭球: { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } = { x c + r u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } = { x c + A u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } \{x|\ (x-x_c)^T P^{-1}(x-x_c)\leq 1\} = \{x_c+ru|\ ||u||_2\leq1\} = \{x_c+Au|\ ||u||_2\leq1\} {x (xxc)TP1(xxc)1}={xc+ru ∣∣u21}={xc+Au ∣∣u21},其中 P ∈ S + + n P\in S^n_{++} PS++n,也就是说P 对称正定,A平方且非奇异。

中心为 x c x_c xc,半径为 r r r 的标准球: { x ∣ ∣ ∣ x − x c ∣ ∣ ≤ r } \{x|\ ||x − x_c|| ≤ r\} {x ∣∣xxc∣∣r}

标准锥: { ( x , t ) ∣ ∣ ∣ x ∣ ∣ ≤ t } \{(x, t) |\ ||x||≤t\} {(x,t) ∣∣x∣∣t}

欧几里得范数锥: { ( x , t ) ∣ ∣ ∣ x ∣ ∣ 2 ≤ t } \{(x, t) |\ ||x||_2≤t\} {(x,t) ∣∣x2t}

多面体 是有限多个线性不等式和等式的解集,也是有限数量的半空间和超平面的交集。 { x ∣ A x ≤ b , C x = d } \{x| Ax\leq b,Cx=d\} {xAxb,Cx=d}

(二)保留凸性的运算

证明集合 C 凸性的方法:

  • 基于定义:如果 x 1 , x 2 ∈ C , 0 ≤ θ ≤ 1 x_1,x_2\in C,0\leq\theta\leq 1 x1,x2C,0θ1,则有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C
  • 使用凸函数;
  • 表明 C 是通过保留凸性的操作从简单凸集(超平面、半空间、范数球……)获得的;

交运算:(任意数量的)凸集的交集是凸的。
在这里插入图片描述

仿射映射:凸集的仿射映射也是凸的。(函数形式为f=Ax+b,则称函数是仿射的,即线性函数加常数的形式。)

在这里插入图片描述(仿射变换就认为是一个矩阵变换,足球可以映射成一个橄榄球,依然是凸集。)

由仿射变换推出凸集的和也是凸集:
在这里插入图片描述

透视函数:凸集在透视下的像和逆像都是凸的(透视函数实际上就是对向量进行伸缩规范化)
在这里插入图片描述

线性分数函数是仿射映射函数和透视变换的复合函数,依然还是保凸运算,凸集在线性分数函数下的像和逆像都是凸的。从联合概率到条件概率的变换是一个线性分数函数。

在这里插入图片描述

(三)正常锥和广义不等式

正常锥的定义:如果凸锥体 K ⊆ R n K⊆R_n KRn满足如下条件,则称锥 K ⊆ R n K⊆R_n KRn为正常锥。

  • K是凸的
  • K是闭的
  • K是实的,即K有非空的内部
  • K是尖的,即K不包含任何直线

在这里插入图片描述

广义不等式满足类似普通不等式的性质,如传递性,反对称性等等。 广义不等式和普通不等式最大的区别是不是任意两点都是可比的。即 x ≤ y x≤y xy y ≤ x y≤x yx对于普通不等式二者必居其一。而对于广义不等式这不一定成立。所以最小,最大这些概念对于广义不等式变得很复杂。

(四)分离和支撑超平面

分离超平面:利用超平面将两个不相交的凸集分离开来,即得到超平面分离定理。
在这里插入图片描述在这里插入图片描述
支撑超平面:如果C是凸的,那么在C的每个边界点都存在一个支持超平面。
在这里插入图片描述在这里插入图片描述支撑超平面不完全逆定理:如果一个集合是闭的,具有非空内部并且其边界上每个点均存在支撑超平面,那么它是凸的。

参考:
凸优化之保凸运算
广义不等式
【最优化理论与算法】数学预备知识、凸集和凸函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/10260.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计数问题C++

题目&#xff1a; 思路&#xff1a; 1~n之间进行循环遍历&#xff0c;如果i不等于0继续循环&#xff0c;然后求出i的个位数与十位数&#xff0c;如果个位数为要查找的特定数字&#xff0c;计时器就1. 代码&#xff1a; #include<iostream> using namespace std; int n,x…

短视频收益分成一览表​​​​​​​​​​​​​​​​,视频号怎么做有收益的

今日为大家揭秘一个热门视频号的操作技巧。很多人都已经操作这类账号&#xff0c;并从中获益。视频号目前是市场上非常热门的平台之一&#xff0c;流量之大令人惊叹&#xff0c;先不提那些私域营销的巨大优势&#xff0c;仅从创作分成计划角度来看&#xff0c;已有许多人每天能…

react18【系列实用教程】useEffect —— 副作用操作 (2024最新版)

什么是副作用操作&#xff1f; useEffect 用于编写由渲染本身引起的对接组件外部的操作&#xff08;官方称呼为&#xff1a;副作用操作&#xff09; 以下情况会触发页面渲染 初次加载页面&#xff08;组的挂载&#xff09;响应式变量发生变化&#xff0c;触发页面根据新值重新…

死锁调试技巧:工作线程和用户界面线程

有人碰到了一个死锁问题&#xff0c;找到我们想请我们看看&#xff0c;这个是关于应用程序用户界面相关的死锁问题。 我也不清楚他为什么会找上我们&#xff0c;可能是因为我们经常会和窗口管理器打交道吧。 下面&#xff0c;我们来看看死锁的两个线程。 >> 请移步至 …

软件工程经济学--期末复习资料

软件工程经济学--期末复习资料 前言第一章 绪论第二章 软件工程经济学基础第三章 软件的成本管理与定价分析第四章 软件工程项目评价方法与经济效果评价第五章 软件生产函数、效益分析及不确定性分析第六章 软件工程项目进度计划的制定结尾总结 前言 软件工程经济学&#xff0…

Java 开发 框架安全:Spring 漏洞序列.(CVE-2022-22965)

什么叫 Spring 框架. Spring 框架是一个用于构建企业级应用程序的开源框架。它提供了一种全面的编程和配置模型&#xff0c;可以简化应用程序的开发过程。Spring 框架的核心特性包括依赖注入&#xff08;Dependency Injection&#xff09;、面向切面编程&#xff08;Aspect-Or…

计算机服务器中了devicdata勒索病毒如何解密,devicdata勒索病毒解密恢复工具

在网络技术飞速发展的时代&#xff0c;有效地利用网络开展各项工作业务&#xff0c;能够大大提升企业的生产运行效率&#xff0c;改善企业的发展运营模式&#xff0c;但如果网络利用不好就会给企业的数据安全带来严重威胁。近日&#xff0c;云天数据恢复中心接到很多企业的求助…

centos7.9升级4.19内核

centos默认的内核版本是3.10 通过命令 uname -a 输出系统的详细信息 在部署k8s集群时使用默认的3.10版本的内核&#xff0c;容易出各种奇奇怪怪的问题、可以理解为docker和k8s与该内核版本不兼容&#xff0c;所以在部署k8s集群时&#xff0c;务必要升级内核&#xff0c;这里…

ESP32重要库示例详解(一):EEPROM之Preferences库

1. 了解EEPROM 在嵌入式系统开发中&#xff0c;断电后晚能存储少量数据是常见需求。EEPROM&#xff08;Electrically Erasable Programmable Read-Only Memory&#xff09;是一种非易失性存储器&#xff0c;即使断电数据也不会丢失。ESP32的EEPROM模拟功能利用闪存空间&#x…

移动硬盘加了PD充电口给设备供电:未来存储与供电的完美结合

添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 一、引言 随着科技的飞速发展&#xff0c;电子设备在人们的日常生活中扮演着越来越重要的角色。与此同时&#xff0c;设备间的互联互通和供电方式的便捷性也成为了用户关注的焦点。移动硬盘&#xff0c;作…

Node.js安装与配置环境 v20.13.1(LTS)

1 下载 Node.js — Run JavaScript Everywhere LTS -- long-term support&#xff0c;长期维护版本 如果要下载其他版本在download里选择下载 2 安装 一路点击next&#xff0c;默认安装路径C:\Program Files\nodejs 3 环境变量配置 1&#xff09;Path环境变量增加nodejs安装…

Prometheus 监控平台组件深度讲解

Prometheus 的重要性和流行度已经无需多言。直入主题&#xff0c;本文对 Prometheus 监控平台的各个组件做深度讲解&#xff0c;希望能帮助读者更好地理解 Prometheus。 监控系统的核心逻辑 对于一套监控系统而言&#xff0c;核心就是采集数据并存储&#xff0c;然后做告警判…

Qt模型视图代理之QTableView应用的简单介绍

往期回顾 Qt绘图与图形视图之绘制带三角形箭头的窗口的简单介绍-CSDN博客 Qt绘图与图形视图之Graphics View坐标系的简单介绍-CSDN博客 Qt模型视图代理之MVD(模型-视图-代理)概念的简单介绍-CSDN博客 Qt模型视图代理之QTableView应用的简单介绍 一、最终效果 二、设计思路 这里…

数据结构——快速排序

基本思想&#xff1a; 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法&#xff0c;其基本思想为&#xff1a;任取待排序元素序列中的某元素作为基准值&#xff0c;按照该排序码将待排序集合分割成两子序列&#xff0c;左子序列中所有元素均小于基准值&#xff0c;…

IT服务台的优势

我们谈谈IT服务台的一些好处&#xff0c;以更好地了解其重要性。IT 服务台为所有利益相关者&#xff08;技术人员和最终用户&#xff09;提供服务带来了效率。例如&#xff0c;三层 IT 服务台可以在第 0 层拥有自助服务门户&#xff0c;在第 1、2 和 3 层拥有技术人员&#xff…

1_1. Linux简介

1_1. Linux简介 文章目录 1_1. Linux简介1. 我们用linux来干嘛2. 计算机组成3. 操作系统4. Linux哲学思想5. Linux目录6. Linux分区类型 1. 我们用linux来干嘛 1. 大家都知道linux是一个操作系统&#xff0c;它是一个基础的软件&#xff0c;操作系统是硬件与应用程序的中间层。…

发布GPT-5的方式可能会与以往不同;开源vocode使用 AI 自动拨打电话;开源gpt智能对话客服工具;AI自动写提示词

✨ 1: vocode 用AI通过声音与用户进行实时交流 Vocode是一个旨在帮助开发者快速构建基于声音的大型语言模型&#xff08;LLM&#xff09;应用程序的开源库。简单来说&#xff0c;如果你想要开发一个能够通过声音与用户进行实时交流的应用&#xff0c;比如电话机器人、语音助手…

weditor安装的时候产生的问题

先放出来github的地址https://github.com/alibaba/web-editor&#xff0c;这个上面给了两种安装方式一种是&#xff1a; pip3 install -U weditor 这种方式会报错误&#xff0c; 具体原因我也不知道。那就采用第二种方式 git clone https://github.com/openatx/weditor pip3…

mysql执行流程

MySQL 架构与SQL执行流程 MySQL主要而分为server层和存储引擎层两部分 Server 层包括连接器、查询缓存、分析器、优化器、执行器等&#xff0c;涵盖 MySQL 的大多数核心服务功能&#xff0c;以及所有的内置函数&#xff08;如日期、时间、数学和加密函数等&#xff09;&#…

AI宝库:全球精选AI工具网站一网打尽,创新智慧触手可及

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 精选专栏&#xff1a;《设计模式》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 探秘AI之巅&#xff0c;一键解锁未来工具&#xff01;立即点击&#xff0c;开启智能新纪元&#…