【图书推荐】《图神经网络基础、模型与应用实战》

本书目的

详解PyTorch 图神经网络基础理论、模型与十多个应用案例,带领读者掌握图神经网络在自然语言处理、计算机视觉、推荐系统、社交网络4个领域的应用开发方法,丰富读者利用深度学习算法解决实际问题的能力。

本书案例

  1. 图卷积网络实现
  2. 图注意力网络实现
  3. 图自编码器实现
  4. 图生成网络实现
  5. 文本分类实现
  6. 情感分析实现
  7. 目标检测实现
  8. 图像生成实现
  9. 用户兴趣建模实现
  10. 推荐算法实现
  11. 广告推荐实现
  12. 社交网络分析实现
  13. 社交网络关系预测实现
  14. 社交网络推荐实现

内容简介

图神经网络不仅能够解决传统机器学习方法无法解决的图数据问题,而且能够应用于许多实际场景,例如社交网络、药物发现、网络安全、金融风控等。

本书旨在为初学者和实践者提供一个详细、全面的入门指南,围绕图神经网络基础、模型、应用实战(均采用Python+PyTorch实现)等方面进行介绍。

本书配套示例源码、数据集、PPT课件。

本书共分9章,内容包括图神经网络概述、PyTorch开发环境搭建、数据集的获取与加载、图神经网络模型、图神经网络在自然语言处理领域的应用、图神经网络在计算机视觉领域的应用、图神经网络在推荐系统领域的应用、图神经网络在社交网络领域的应用、图神经网络的挑战和机遇。其中,每个领域的应用都包括1~3个实战项目,可以帮助读者快速掌握图神经网络。

适合的读者

本书适合图神经网络初学者、图神经网络算法开发人员、深度学习算法开发人员,也适合高等院校或高职高专图神经网络相关课程的师生教学参考。

作者简介

兰伟,广西大学计算机与电子信息学院副教授,博士研究生导师,中南大学博士。主要研究方向为机器学习、数据挖掘、生物信息学。在国际知名期刊和会议上发表论文60余篇,先后出版专著2部,获省部级奖项1项。

前言

当今社会,图数据(如社交网络、交通网络、化学分子结构等)的出现越来越普遍,图神经网络在解决这些复杂的图数据上的挑战方面已经展现出了惊人的效果。图神经网络不仅能够解决传统机器学习方法无法解决的图数据问题,而且能够应用于许多实际场景,例如社交网络、推荐系统、药物发现、网络安全、金融风控、交通网络优化、计算机视觉、自然语言处理、医疗保健、物理科学和遥感科学等。

本书需要哪些预备知识

本书要求读者具备一定的预备知识,包括深度学习基础、线性代数、概率论、编程语言(如Python)的知识。对深度学习的理解至少应包括神经网络的基本原理和常见架构。对线性代数和概率论的理解应该能够支撑对复杂模型的数学描述和理论分析。读者应熟悉NumPy、Pandas等数据处理库,以及PyTorch等深度学习框架。

本书涵盖图神经网络的哪些方面

本书旨在为初学者和实践者提供一个详细的、全面的图神经网络入门指南,围绕图神经网络基础、实现、应用等方面进行介绍,主要内容包括图神经网络的基础、模型、算法实现、应用场景(如社交网络分析、推荐系统、蛋白质结构预测和图像分割等),以及图神经网络未来发展的前瞻性探讨。

图神经网络有哪些优势

图神经网络的主要优势在于其独特的能力,通过对图结构数据(如社交网络、推荐系统等)中的节点和边进行深度学习,有效捕捉和利用数据的拓扑关系,实现复杂关系和交互效应的建模。这种方法不仅能够提高数据分析和预测的准确性,而且能够揭示隐藏在图数据中的深层次模式和结构,从而在推荐系统、社交网络等多个领域提供前所未有的洞见和解决方案。

本书的特点

(1)全面深入:本书介绍了图神经网络的基础知识、算法原理、应用案例以及实践技巧,内容全面、深入。

(2)应用广泛:本书不仅介绍了图神经网络在社交网络分析、推荐系统等领域的应用,还介绍了其在计算机视觉和自然语言处理等领域的应用。

(3)实践性强:本书介绍了如何使用Python和流行的PyTorch框架来实现图神经网络,同时还介绍了如何处理和准备图数据集以及图神经网络的超参数调优方法等实践技巧。

(4)系统性强:本书的章节结构清晰,内容层次分明,系统性强,让读者在学习图神经网络时可以更好地理解整体框架和思路。

(5)前瞻性强:本书在讨论图神经网络未来发展的章节中,探讨了图神经网络的挑战和限制,并讨论了图神经网络未来的研究方向和应用前景,具有较强的前瞻性。

资源下载

本书配套示例源码、数据集、PPT课件,请读者用自己的微信扫描下面的二维码下载。如果在学习本书的过程中发现问题或有疑问,可发送邮件至booksaga@163.com,邮件主题写上“图神经网络基础、模型与应用实战”。

本书读者

  • 图神经网络初学者
  • 图神经网络算法开发人员
  • 深度学习算法开发人员
  • 高等院校或高职高专图神经网络课程的师生

作  者

2024年2月

目录

第1章  图神经网络概述 1
1.1  什么是图神经网络 1
1.1.1  图的基础知识 1
1.1.2  图神经网络简介 2
1.1.3  图神经网络的应用领域 3
1.2  图神经网络的重要性 4
1.3  图神经网络与传统深度学习的区别 5
1.3.1  传统深度学习模型 6
1.3.2  图神经网络与传统深度学习的区别 8
第2章  PyTorch开发环境搭建 10
2.1  Anaconda的安装和配置 10
2.2  PyCharm的安装和配置 12
2.3  PyTorch Geometric的安装和配置 13
2.3.1  查看系统支持的CUDA版本 14
2.3.2  下载最新的Navida显卡驱动 14
2.3.3  下载CUDA Toolkit 14
2.3.4  cuDNN的安装 16
2.3.5  安装PyTorch框架虚拟环境 17
2.3.6  检查PyTorch框架的安装 18
2.3.7  安装图神经网络库 19
2.3.8  使用Jupyter Notebook运行代码 20
第3章  数据集的获取与加载 22
3.1  PyTorch Geometric内置数据集 22
3.1.1  PyTorch Geometric简介 22
3.1.2  PyG内置数据集简介 23
3.1.3  如何加载内置数据集 24
3.2  自定义数据集 25
3.2.1  torch_geometric.data.Dataset类 25
3.2.2  torch_geometric.data.DataLoader类 28
3.2.3  如何加载自定义数据集 29
3.3  数据集预处理步骤 31
3.3.1  图像数据预处理 31
3.3.2  图数据预处理 41
第4章  图神经网络模型 45
4.1  图卷积神经网络 46
4.1.1  图卷积神经网络的起源和发展 46
4.1.2  图卷积神经网络与卷积神经网络的异同 46
4.1.3  图卷积神经网络简单代码实现 47
4.1.4  卷积神经网络简单代码示例 49
4.1.5  图卷积神经网络的应用领域 50
4.2  图注意力网络 51
4.2.1  图注意力网络的由来和发展 51
4.2.2  图注意力网络模型代码实现 51
4.2.3  图注意力网络的应用领域 53
4.3  图自编码器 54
4.3.1  图自编码器的由来和发展 54
4.3.2  图自编码器代码实现 54
4.3.3  图自编码器的应用领域 56
4.4  图生成网络 57
4.4.1  图生成网络的由来和发展 57
4.4.2  图生成网络代码实现 57
4.4.3  图生成网络的应用领域 59
第5章  图神经网络在自然语言处理领域的应用 60
5.1  基于图神经网络的文本分类实现 60
5.1.1  问题描述 61
5.1.2  导入数据集 61
5.1.3  词嵌入 63
5.1.4  构造邻接矩阵 64
5.1.5  构建图数据 66
5.1.6  图的小型批处理 68
5.1.7  图卷积神经网络 69
5.1.8  模型训练与测试 70
5.2  基于图神经网络的情感分析实现 71
5.2.1  问题描述 72
5.2.2  导入数据集 72
5.2.3  词嵌入 74
5.2.4  语法依存树 74
5.2.5  图的小型批处理 76
5.2.6  图神经网络的构造 77
5.2.7  模型训练与测试 78
5.3  基于图神经网络的机器翻译实现 79
5.3.1  基于语法感知的图神经网络编码器用于机器翻译 80
5.3.2  利用图卷积神经网络挖掘机器翻译中的语义信息 80
5.3.3  示例总结 80
第6章  图神经网络在计算机视觉领域的应用 81
6.1  基于图神经网络的图像分类实现 82
6.1.1  基于端到端的图神经网络模型的图像分类 82
6.1.2  基于区域的图神经网络模型的图像分类 93
6.2  基于图神经网络的目标检测实现 117
6.2.1  图神经网络的目标检测方法及其优缺点 117
6.2.2  GSDT目标检测的步骤 118
6.2.3  问题描述 120
6.2.4  导入数据集 120
6.2.5  模型搭建 120
6.2.6  模型训练与测试 121
6.3  基于图神经网络的图像生成实现 122
6.3.1  基于草图组合与图像匹配的图像生成 122
6.3.2  基于图神经网络的场景图生成 125
6.3.3  基于图卷积神经网络从场景图生成图像 126
第7章  图神经网络在推荐系统领域的应用 153
7.1  基于图神经网络的用户兴趣建模实现 154
7.2  基于图神经网络的推荐算法实现 155
7.3  基于图神经网络的广告推荐实现 156
7.3.1  数据预处理 157
7.3.2  模型定义 161
7.3.3  参数设置 165
7.3.4  模型训练与测试 168
7.3.5  结果 173
第8章  图神经网络在社交网络领域的应用 174
8.1  基于图神经网络的社交网络分析实现 174
8.1.1  问题描述 174
8.1.2  导入数据集 175
8.1.3  模型搭建 176
8.1.4  模型训练与测试 177
8.1.5  示例总结 178
8.2  基于图神经网络的社交网络关系预测实现 180
8.2.1  问题描述 180
8.2.2  导入数据集 181
8.2.3  模型搭建 182
8.2.4  模型训练与测试 183
8.2.5  示例总结 186
8.3  基于图神经网络的社交网络推荐实现 190
8.3.1  问题描述 190
8.3.2  导入数据集 190
8.3.3  模型搭建 192
8.3.4  模型训练与测试 193
8.3.5  示例总结 195
第9章  图神经网络的挑战和机遇 197
9.1  图神经网络的发展历程和现状 197
9.1.1  图神经网络的分类 198
9.1.2  经典的图神经网络模型 198
9.2  图神经网络的技术挑战和应用机遇 202
9.3  图神经网络的未来发展方向和热点问题 203

正版购买

《图神经网络基础、模型与应用实战(人工智能技术丛书)》(兰伟,叶进,朱晓姝)【摘要 书评 试读】- 京东图书 (jd.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/8552.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Comate,一款基于文心大模型的智能编程助手

一、官网 Baidu Comate官网 二、安装VSCode 如何下载安装VSCode 三、VSCode安装Comate 安装方式1 访问Comate官网点击 立即安装Comate插件 按钮快速安装 安装方式2 访问VSCode市场中的BaiduComate 点击 Install 按钮访问扩展详情界面 2.打开VSCode 3.安装Comate 四、…

先经营好自己,才是成事最坚实的基础!做事要稳!

电影《教父》里有句著名的台词说:花半秒钟就能看透事物本质的人,和花一辈子也看不透事物本质的人,注定是截然不同的命运。而这所谓的“看透本质”,就是事物的底层逻辑。 底层逻辑是一种解决问题的思维模式。底层逻辑越坚固&#x…

中金:如何把握不断轮动的资产“风口”

从比特币到日股,到黄金与铜再到当前的港股,每次超预期大涨后都透支回调。 今年以来资产的“风口”不断轮动,从比特币到日股,到黄金与铜,再到当前的港股,资产仿佛“接力”般交替领先,同时“风口”…

js api part6

正则表达式 正则表达式 (Regular Expression)是用于 匹配字符串中字符组合 的模式。在 JavaScript中,正则表达式也是对象。通常用来查找、替换那些符合正则表达式的文本,许多语言都支持正则表达式。 正则表达式在 JavaScript中的…

spring框架学习记录(3)

Spring事务 Spring事务简介 事务作用:在数据层保障一系列的数据库操作同成功同失败Spring事务作用:在数据层或业务层保障一系列的数据库操作同成功或同失败 Spring事务角色 事务管理员:发起事务方,在Spring中通常指代业务层开…

AI智能分析视频监控行业的发展趋势和市场发展浅析

监控视频AI智能分析技术的现状呈现出蓬勃发展的态势,这一技术源于计算机视觉和人工智能的研究,旨在将图像与事件描述之间建立映射关系,使计算机能够从视频图像中分辨出目标信息。 在技术上,监控视频AI智能分析技术已经实现了对视…

Ps中 饱和度 和 自然饱和度 的区别?

1.饱和度(Saturation):在Photoshop中,饱和度是一个全局性调整,它影响图像中所有颜色的鲜艳程度。当你增加饱和度时,所有的颜色都会变得更浓烈、更鲜艳;相反,减小饱和度会使图像整体变…

小猪APP分发:重塑应用分发市场的创新力量

在移动互联网蓬勃发展的今天,应用分发平台作为连接开发者与用户的桥梁,扮演着至关重要的角色。然而,随着市场的饱和,如何在众多平台中脱颖而出,为开发者提供更宽广的舞台,同时确保用户能够便捷、安全地获取…

程序员必备的7大神器,效率飞起!

我们都知道程序员在工作时,会经常遇到任务繁重的情况,为了提高效率,程序员们也会借助一些软件,那么哪些软件可以帮助程序员们提高工作效率呢? 整理不易,关注一波!! 1. Xftp 7 Xft…

06-beanFactoryPostProcessor的执行

文章目录 invokeBeanFactoryPostProcessors(beanFactory)invokeBeanFactoryPostProcessors(beanFactory, getBeanFactoryPostProcessors())invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry);invokeBeanFactoryPostProcessors(regularPostProc…

将ESP工作为AP路由模式并当成服务器

将ESP8266模块通过usb转串口接入电脑 ATCWMODE3 //1.配置成双模ATCIPMUX1 //2.使能多链接ATCIPSERVER1 //3.建立TCPServerATCIPSEND0,4 //4.发送4个字节在链接0通道上 >ATCIPCLOSE0 //5.断开连接通过wifi找到安信可的wifi信号并连接 连接后查看自己的ip地址变为192.168.4.…

Java中next()与nextLine()的区别[不废话,直接讲例子]

在使用牛客进行刷题时,我们很多时候会遇到这样的情况: 区别很简单,如果你要输入用空格或者回车分开的数据如: abc_def_ghi 这三组数据( _ 是空格) 用hasNext: 执行结果: 如果只用换行符号进行…

6层板学习笔记1

说明:笔记基于6层全志H3消费电子0.65MM间距BGA 目的:掌握各类接口的布局思路和布线,掌握DDR高速存储设计 1、网表的导入是原理图的元件电气连接关系,位号,封装,名称等参数信息的总和 2、原理图文件包含(历史版本记录,功能总框图,电源树,GPIO分配,DDR功能,CPU,US…

Mysql:Before start of result set

解决方法:使用resultSet.getString()之前一定要调用resultSet.next() ResultSet resultSet statement1.executeQuery();while (resultSet.next()){String username1 resultSet.getString("username");int id1 resultSet.getInt…

pytorch基础: torch.unbind()

1. torch.unbind 作用 说明:移除指定维后,返回一个元组,包含了沿着指定维切片后的各个切片。 参数: tensor(Tensor) – 输入张量dim(int) – 删除的维度 2. 案例 案例1 x torch.rand(1,80,3,360,360)y x.unbind(dim2)print(&…

案例分享:BACnet转Modbus提升暖通系统互操作性

现代智能建筑中系统的集成与互操作性是决定其智能化程度的关键因素。随着技术的发展,不同标准下的设备共存成为常态,而BACnet与Modbus作为楼宇自动化领域广泛采用的通讯协议,它们之间的无缝对接显得尤为重要。本文将通过一个实际案例&#xf…

全面的Partisia Blockchain 生态 4 月市场进展解读

Partisia Blockchain 是一个以高迸发、隐私、高度可互操作性、可拓展为特性的 Layer1 网络。通过将 MPC 技术方案引入到区块链系统中,以零知识证明(ZK)技术和多方计算(MPC)为基础,共同保障在不影响网络完整…

如何在matlab时间序列中X轴标注月-日

一般我们使用的时间序列都是以年为单位,比如下图: 而如果要绘制月尺度的时间变化图,则需要调整X轴的标注。下面代码展示了如何绘制小时尺度的降水数据。 [sname2,lon2,lat2] kml2xy(GZ_.kml); nc_bound2 [lon2,lat2]; area_ind2inpolygon(e…

WSL介绍(Windows10内置的Linux子系统)

最近发现在Windows10下不用安装虚拟机也可以使用Linux,然后发现原来2016年就已经有这个功能了,下面来介绍下如何使用。 首先我的win10版本信息如下,以免部分版本不支持,可以做个参考。 需要进到控制面板里将Linux子系统功能打开&a…

Linux学习笔记1

1.背景认知 可能很多人还没有接触Linux,会有点畏惧,我们可以把Linux类比成Windows, 下面是Windows和Linux的启动对比 Windows:上电后一开始屏幕是黑黑的---bios在启动Windows----Windows之后找到c盘启动各种应用程序 Linux&am…