Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型

 往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT_pyts 小波变换 故障-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD_轴承诊断 pytorch-CSDN博客

Pytorch-LSTM轴承故障一维信号分类(一)_cwru数据集pytorch训练-CSDN博客

Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客

Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

大甩卖-(CWRU)轴承故障诊数据集和代码全家桶-CSDN博客

Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类-CSDN博客

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention轴承故障识别模型-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN-Transformer-CrossAttention轴承故障识别模型-CSDN博客

轴承故障诊断 (12)基于交叉注意力特征融合的VMD+CNN-BiLSTM-CrossAttention故障识别模型-CSDN博客

Python轴承故障诊断入门教学-CSDN博客

Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客

Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客

Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客

轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客

Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客

Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型_pytorch使用tcn网络进行故障诊断 csdn-CSDN博客

独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客

注意:本模型 和 基于VMD+CNN-BiGRU-Attenion的故障分类 继续加入 轴承故障诊断—创新模型全家桶 ,之前购买的同学请及时更新下载

全网最低价,创新网络分类效果显著,模型能够充分提取轴承故障信号的空间和时序特征和频域特征,收敛速度快,性能优越, 精度高。创新度也有!!!高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!

CNN-TCN-Attention模型:

输入数据维度为[32, 1, 1024], 先送入CNN网络进行1d的卷积池化提取空间特征,然后把卷积池化后的特征送入TCN层提取时序特征,最后通过自注意力进行多尺度特征融合,最终送入全连接层和softmax进行分类诊断。

前言

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现CNN-TCN-Attention模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_load(hp)-CSDN博客

1 轴承数据加载与预处理

1.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

1.2 数据预处理,制作数据集

2 基于Pytorch的CNN-TCN-Attention创新诊断模型

2.1 定义CNN-TCN-Attention分类网络模型

2.2 设置参数,训练模型

50个epoch,准确率将近98%,CNN-TCN-Attention网络分类效果显著,CNN-TCN-Attention模型能够充分提取轴承故障信号的多尺度特征,收敛速度快,性能特别优越,效果明显。

注意调整参数:

  • 可以适当增加 TCN层数和每层维度数,微调学习率;

  • 微调CNN层数和每层神经元个数,增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

2.3 模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

代码、数据如下:

对数据集和代码感兴趣的,可以关注最后一行

# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#代码和数据集:https://mbd.pub/o/bread/ZZ2Wm5Zs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/8024.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux系列】file命令

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

hadoop学习---基于Hive的数据仓库相关函数机制及其优化方案

Hive相关函数&#xff08;部分&#xff09;&#xff1a; if函数: 作用: 用于进行逻辑判断操作 语法: if(条件, true返回信息,false返回信息) 注意: if函数支持嵌套使用 select if(aa,’bbbb’,111) fromlxw_dual; bbbb select if(1<2,100,200) fromlxw_dual; 200nvl函数:…

25_Scala集合Tuple

文章目录 tuple1.元组定义2.Tuple元素访问3.如果元素的len2&#xff0c;称之为键值对对象&#xff0c;也称之为对偶元组4.补充上节Map5.Map集合遍历6.集合之间相互转化 tuple 概念&#xff1a;scala语言采用特殊的方式将无关的数据作为一个整体&#xff0c;组合在一起’ 1.元…

2024爆火的AI设备Rabbit R1到底是什么?有人说它是AI的iPhone时刻,有人说它是套壳的安卓

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…

c++编程(10)——string

欢迎来到博主的专栏——c编程 博主ID&#xff1a;代码小豪 文章目录 <string>string类的接口构造、析构、与赋值重载构造函数赋值重载运算符 元素访问operator[] 容量修改器对string对象的操作迭代器 std::string是定义在c标准的一个类&#xff0c;定义在标准库<strin…

Unity 性能优化之图片优化(八)

提示&#xff1a;仅供参考&#xff0c;有误之处&#xff0c;麻烦大佬指出&#xff0c;不胜感激&#xff01; 文章目录 前言一、可以提前和美术商量的事1.避免内存浪费&#xff08;UI图片&#xff0c;不是贴图&#xff09;2.提升图片性能 二、图片优化1.图片Max Size修改&#x…

龙兵知识付费系统开发,教育机构如何利用小程序引流?

时代进步的好处是人们需求也越来越多&#xff0c;家长要求孩子学习十八般武艺&#xff0c;唱歌绘画舞蹈钢琴一样不能落下&#xff0c;各种培训需求只增不减&#xff0c;培训机构当然也越来越多。针对小孩子的才艺培训、针对大学生的考研考证培训、针对在职人士的技能培训和企业…

Momentum靶机系列Momentum2

先进行arp扫描&#xff1a; 获得渗透靶机的IP&#xff1a;192.168.13.142 扫描一下靶机的使用的端口&#xff1a; 具有tcp端口和http服务的80端口 可以扫描一下80端口的http服务&#xff1a; 可以发现一个网站&#xff1a;http://192.168.13.142 打开该网址&#xff1a; 查看…

Flink 部署模式

目录 概述 部署模式 会话模式&#xff08;Session Mode&#xff09; 单作业模式(Per-Job Mode) 应用模式(Application Mode) 运行模式&#xff08;资源管理模式&#xff09; Standalone运行模式 会话模式部署 应用模式部署 Yarn运行模式 会话模式部署 单作业模式部…

鸿蒙开发核心技术都有哪些【都是从零开始】

鸿蒙开发核心技术都有哪些&#xff1f;&#xff1a;【持续1年的时间公关鸿蒙技术】 我们能做哪些呢&#xff1f; 还是从UI业务开始吧 面试题1&#xff1a; 基于STAGE模型项目重构等问题 代理设计模式&#xff0c;业务与架构隔离 中介者模式&#xff0c;和代理设计模式的区别…

在 Vue3 中使用 styled-components

前言 随着组件化时代的兴起&#xff0c;前端应用开始采用组件级别的 CSS 封装&#xff1a;通过 JavaScript 声明和抽象样式&#xff0c;以提高组件的可维护性。在组件加载时动态加载样式&#xff0c;并动态生成类名&#xff0c;从而避免全局污染。 styled-components 是其中的…

湖仓一体 - Apache Arrow的那些事

湖仓一体 - Apache Arrow的那些事 Arrow是高性能列式内存格式标准。它的优势&#xff1a;高效计算&#xff1a;所有列存的通用优势&#xff0c;CPU缓存友好、SIMD向量化计算友好等&#xff1b;零序列化/反序列化&#xff1a;arrow的任何数据结构都是一段连续的内存&#xff0c;…

uniapp使用iconfont

1、把这两个文件在项目的静态资源目录下 2、修改iconfont.css文件 3、最后在app.vue中引入

软件测试—— 接口测试之通讯流程相关概念

通讯流程 1、协议 通讯规则 2、HTTP协议 协议的一种 3、接口规范文档 如何发请求的要求文档&#xff0c;获取什么响应内容的说明文档&#xff08;相当于菜单&#xff09;

Boost.Preprocessor库

Boost.Preprocessor库是Boost C库的一部分&#xff0c;提供了一组扩展的预处理器元编程功能。这个库的主要目的是帮助开发者使用预处理器进行元编程&#xff0c;以及提供一组工具来操纵预处理阶段的文本。 预处理器在C编译过程中的角色主要是处理源代码文件中的预处理指令&…

AI换脸免费软件Rope中文汉化蓝宝石版本全新UI界面,修复部分已知错误【附下载地址与详细使用教程】

rope蓝宝石版&#xff1a;点击下载 注意&#xff1a;此版本支持N卡、A卡、CPU&#xff0c;且建议使用中高端显卡&#xff0c;系统要求win10及以上。 Rope-蓝宝石 更新内容&#xff1a; 0214版更新&#xff1a; ①&#xff08;已修复&#xff09;恢复到以前的模型荷载参数。有…

IEEE 754浮点数十六进制相互转换 (32位 四字节 单精度)

IEEE 754浮点数十六进制相互转换 &#xff08;32位 四字节 单精度&#xff09; 常用方法 1. 使用联合体&#xff08;Union&#xff09; 通过定义一个联合体&#xff0c;其中包含一个float类型和一个unsigned char类型的数组&#xff0c;可以实现四个字节到浮点数的转换。 #…

课时118:awk实践_基础实践_基础语法

1.1.2 基础语法 学习目标 这一节&#xff0c;我们从 信息查看、定制查看、小结 三个方面来学习 信息查看 字段提取 字段提取:提取一个文本中的一列数据并打印输出&#xff0c;它提供了相关的内置变量。$0 表示整行文本$1 表示文本行中的第一个数据字段$2 表示文本行中的第…

Python中GDAL批量将多个遥感影像各波段数值缩小10000倍的方法

本文介绍基于Python中的gdal模块&#xff0c;批量读取大量多波段遥感影像文件&#xff0c;分别对各波段数据加以数值处理&#xff0c;并将所得处理后数据保存为新的遥感影像文件的方法。 首先&#xff0c;看一下本文的具体需求。我们现有一个文件夹&#xff0c;其中含有大量.ti…

OceanBase 如何实现多层面的资源隔离

OceanBase的资源隔离涵盖了多个方面&#xff0c;如物理机器间的隔离、不同租户之间的隔离、同一租户内的隔离&#xff0c;以及针对大型查询请求的隔离等。在实际应用OceanBase的过程中&#xff0c;我们经常会遇到这些操作场景或产生相关需求。这篇文章针对这些内容进行了简要的…