LLaMA 羊驼系大语言模型的前世今生

关于 LLaMA

LLaMA是由Meta AI发布的大语言系列模型,完整的名字是Large Language Model Meta AI,直译:大语言模型元AI。Llama这个单词本身是指美洲大羊驼,所以社区也将这个系列的模型昵称为羊驼系模型

Llama、Llama2 和 Llama3 是一系列由 Meta AI 开发的开源大型语言模型(LLMs)。

LLaMA

LLaMA是Meta AI公司于2023年2月发布的大型语言模型。作为该系列的初代模型,Llama 是一个纯粹的基座语言模型,设计目标是提供一个开放且高效的通用语言理解与生成平台。共有 7B13B33B65B(650 亿)四种版本。

关于训练集,其来源都是公开数据集,无任何定制数据集,保证了其工作与开源兼容和可复现。整个训练数据集在 token 化之后大约包含 1.4T 的 token。其中,LLaMA-65B 和 LLaMA-33B 是在 1.4万亿个 token 上训练的,而最小的模型 LLaMA-7B 是在 1万亿个 token 上训练的。

关于模型性能,LLaMA 的性能非常优异:具有 130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过 GPT-3( 参数量达 1750 亿),而且可以在单块 V100 GPU 上运行;而最大的 650 亿参数的 LLaMA 模型可以媲美谷歌的 Chinchilla-70B 和 PaLM-540B。虽然其他强大的大语言模型通常只能通过有限的API访问,但Meta在非商业许可的情况下发布了LLaMA的模型权重,供研究人员参考和使用。

LLaMA2

2023年7月,Facebook母公司Meta推出了LLaMA2,在人工智能 (AI) 行业掀起波澜,LLaMA2是一种开源大语言模型 (LLM),旨在挑战大型科技竞争对手的限制性做法。Meta免费发布 LLaMA2背后的代码和数据,使世界各地的研究人员能够利用和改进该技术。 Meta的首席执行官马克·扎克伯格一直直言不讳地强调开源软件对于刺激创新的重要性。

Meta 训练并发布了三种模型大小的 Llama 2:70、130 和 700 亿个参数。模型架构与 Llama 1 模型基本保持不变,但用于训练基础模型的数据增加了 40%。随附的预印本还提到了一个具有 34B 参数的模型,该模型可能在未来满足安全目标后发布。

Llama 2 包括基础模型和针对对话进行微调的模型,称为 Llama 2 - 聊天。与 Llama 1 进一步不同的是,所有模型都附带权重,并且对于许多商业用例都是免费的。然而,由于一些剩余的限制,Llama开源的描述受到了开源倡议组织(以维护开源定义而闻名)的争议。

Llama2 是 Llama 系列的下一代版本,标志着对初代模型的重要升级。以下是一些关键特性:

  1. SOTA 性能:Llama2 被描述为新的 state-of-the-art(SOTA)开源大型语言模型,意味着在发布时其性能在相关基准测试或实际应用中处于业界领先水平。
  2. 商业许可证:Llama2 附带商业许可证,这表明虽然它是开源的,但使用它可能需要遵循特定的许可条款,可能是为了确保模型的合理使用并保护知识产权。
  3. 模型规模:Llama2 的最大模型版本拥有约 700 亿个参数,展示了其在模型复杂度和潜在能力上的提升。
  4. 训练数据:Llama2 的训练数据规模显著增加,使用的 token 数量翻倍至 2 万亿,这增强了模型对广泛语言现象的理解和生成能力。
  5. 模型结构:虽然具体架构细节未给出,但提到的 MHA(多头注意力机制)、MQA(多查询注意力)、GQA(全局查询注意力)等组件可能暗示着 Llama2 在 Transformer 解码器部分采用了创新的设计,以提高模型的信息捕获和推理能力。

LLaMA3

Llama3 是 Llama 系列的最新迭代,展现了显著的技术进步和战略意义:

  1. 发布与时间节点:Llama3 于2024年4月18日发布,距离 Llama2 的发布仅过去了9个月,表明Meta AI 在短时间内快速推进了技术研发。
  2. 模型规模与性能
    • 参数数量:Llama3 提供了不同规模的版本,包括最小的 80 亿参数版本和最大规划中的 4050 亿参数版本。即使最小版本与 Llama2 最大版本(700亿参数)的性能处于同一量级,显示出Llama3在模型效率上的提升。
    • 性能对比:Llama3 的性能被描述为直逼 GPT-4,这暗示其在某些任务上可能与 OpenAI 的旗舰模型相当甚至有所超越,体现了其在语言理解和生成领域的强大竞争力。
  3. 训练数据与效率
    • 数据规模:Llama3 基于超过 15 万亿个 token 的公开数据预训练,数据量是 Llama2 的七倍,反映了 Meta AI 对于大规模数据驱动模型性能提升的重视。
    • 训练效率:Llama3 的训练效率相较于 Llama2 提升了三倍,这可能得益于算法优化、硬件加速或分布式训练策略的进步,使得在相同时间内能够完成更多的训练迭代或处理更大规模的数据。
  4. 集成与应用
    • 虚拟助手:Llama3 将被整合到 Meta 的虚拟助手服务中,使其成为 Facebook、Instagram、WhatsApp、Messenger 等平台上免费使用的最先进 AI 应用程序之一,增强了这些社交平台的智能化交互体验。
    • 云服务支持:亚马逊云科技(Amazon Web Services, AWS)官方博客提供了在 SageMaker Studio 中使用 Llama3 的详细指南,说明该模型得到了主流云服务商的支持,便于开发者和研究人员便捷地部署和利用。

综上所述,Llama、Llama2 和 Llama3 代表了 Meta AI 在大型语言模型开发上的连续创新与进步。从Llama到Llama2,再到Llama3,这一系列模型不仅在模型规模、训练数据量和训练效率上不断突破,而且在架构设计、许可策略以及实际应用场景中均展现出显著的迭代与升级。Llama3作为最新版本,以其逼近 GPT-4 的性能、大规模数据驱动的学习以及高效训练流程,巩固了 Meta 在开源大模型领域的领先地位,并推动了人工智能在社交、商业和其他领域的广泛应用。


欢迎关注微信公众号:大数据AI

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/7399.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++字模软件发送 单片机接收显示

/****先定义数组类型再赋值**L310*********/ /*2014 8 21 10:01**PAST*CODE1000**TEST**/ #include<reg51.h> #define uint unsigned int #define uchar unsigned char sfr AUXR0x8e; //辅助寄存器 sfr SADDR0xA9; …

多链路聚合设备是什么

多链路聚合设备属于通信指挥装备。 乾元通多链路聚合设备&#xff0c;它能够将多个网络链路聚合成一个逻辑链路&#xff0c;以实现高速、稳定、可靠的数据传输。多链路聚合设备的核心技术包括链路聚合、负载均衡、故障切换等&#xff0c;能够智能管理和优化利用不同网络链路&a…

websevere服务器从零搭建到上线(二)|Linux上的五种IO模型

文章目录 阻塞 blocking非阻塞 non-blockingIO复用 IO multiplexing信号驱动 signal-driven异步 asynchronous拓展知识 看过上篇文章英国基本能理解本文五张图的内容websevere服务器从零搭建到上线&#xff08;一&#xff09;&#xff5c;阻塞、非阻塞、同步、异步 本文要能够在…

HIVE统计WordCount

HIVE WORDCOUNT 目录 HIVE WORDCOUNT 一、WORDCOUNT 1.我们先创建一个新的数据库 2.创建表并插入数据 3.统计WORDCOUNT 4.UNION ALL 用法 5.WITH AS 用法 1.WORDCOUNT 1&#xff09;我们先创建一个新的数据库 create database learn3;use learn3; 2&#xff09;创建表…

知识图谱融入RAG模型:LinkedIn重塑智能客服新范式【附LeCun哈佛演讲PPT】

原文&#xff1a;Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering 一、研究背景与问题 在客服领域,快速准确地匹配用户问题与历史工单,是提供优质回答的关键。传统的检索增强生成(Retrieval-Augmented Generation, RAG)方法虽…

分享5款PDF编辑软件

PDF编辑不易&#xff0c;有需要的朋友可以试试这5款专业软件&#xff0c;每一个都能直接在PDF文件上编辑&#xff0c;不同的软件对PDF可编辑的范围不同&#xff0c;大家可以按需求选用。 1.edge浏览器 Edge浏览器不仅是浏览网页的得力助手&#xff0c;还悄然成为了轻量级PDF管…

2024蓝桥杯RSA-Theorem

方法1&#xff1a;直接使用工具yafu解题 yafu的使用方法 安装&#xff1a;解压后直接使用即可&#xff0c;在文件包内&#xff0c;执行命令终端&#xff0c;输入命令行 1、如果数比较小&#xff0c;进入该文件的目录后可以直接使用: yafu-x64 factor(n) 如果是powershell&…

Embeddings原理、使用方法、优缺点、案例以及注意事项

Embeddings是一种将高维数据映射到低维空间的技术&#xff0c;常用于处理自然语言处理&#xff08;NLP&#xff09;和计算机视觉&#xff08;CV&#xff09;任务。Embeddings可以将复杂的高维数据转换为低维稠密向量&#xff0c;使得数据可以更容易地进行处理和分析。本文将介绍…

张家界(24-17)

目录 总路线酒店&#xff1a;深圳北->张家界西&#xff08;day1 07:14~13:45&#xff09;张家界西&#xff08;酒店&#xff09;->张家界森林公园东门&#xff08;day2 早上&#xff09;张家界森林公园东门->张家界西&#xff08;day2 19:48分的高铁&#xff09;张家界…

leetcode-有重复数字的全排列-98

题目要求 思路 1.同【没有重复项的全排列-97】这个题一样&#xff0c;都是递归的题&#xff0c;区别在于这个可能会包含重复的数字&#xff0c;因此&#xff0c;不能只是简单的通过两个值是否相等然后用标志位标记&#xff0c;而是新增了一个数组&#xff0c;这个数组专门用于…

树和二叉树:二叉树的基本运算算法的实现

一.前言 当前版本仅供笔者复盘 二.二叉树 2.1题目 编写一个程序&#xff0c;实现二叉树的基本运算&#xff0c;具体要求如下&#xff1a;&#xff08;指定示范实例1&#xff1a;图1。指定示范实例2&#xff1a;图2 &#xff09; 1&#xff0c;先序遍历输出该树&#xff08…

Qt QInputDialog详解

1.简介 QInputDialog是一个对话框类&#xff0c;用于从用户那里获取一个单一的值。这个值可以是字符串、数字、或者一个列表中的选项。QInputDialog提供了一个方便的方式来快速创建一个输入对话框&#xff0c;无需自己从头开始构建。 QInputDialog支持多种输入类型&#xff1…

【CTF Web】XCTF GFSJ0475 get_post Writeup(HTTP协议+GET请求+POST请求)

get_post X老师告诉小宁同学HTTP通常使用两种请求方法&#xff0c;你知道是哪两种吗&#xff1f; 解法 用 Postman 发送一个 GET 请求&#xff0c;提交一个名为a,值为1的变量。 http://61.147.171.105:65402/?a1用 Postman 发送一个 POST 请求&#xff0c;提交一个名为b,值为…

【吊打面试官系列】Java高并发篇 - 可以直接调用 Thread 类的 run ()方法么?

大家好&#xff0c;我是锋哥。今天分享关于 【可以直接调用 Thread 类的 run ()方法么&#xff1f;】面试题&#xff0c;希望对大家有帮助&#xff1b; 可以直接调用 Thread 类的 run ()方法么&#xff1f; 当然可以。但是如果我们调用了 Thread 的 run()方法&#xff0c;它的行…

VSCode通过SSH连接虚拟机Ubuntu失败

问题说明 最近使用VSCode通过SSH连接Ubuntu&#xff0c;通过VSCode访问Ubuntu进行项目开发&#xff0c;发现连接失败 在VSCode中进行SSH配置 这些都没有问题&#xff0c;但在进行连接时候出现了问题&#xff0c;如下&#xff1a; 出现了下面这个弹窗 解决方法 发现当…

【c1】数据类型,运算符/循环,数组/指针,结构体,main参数,static/extern,typedef

文章目录 1.数据类型&#xff1a;编译器&#xff08;compiler&#xff09;与解释器&#xff08;interpreter&#xff09;&#xff0c;中文里的汉字和标点符号是两个字节&#xff0c;不能算一个字符&#xff08;单引号&#xff09;2.运算符/循环&#xff1a;sizeof/size_t3.数组…

在.NET架构的Winform项目中引入“异步编程”思想和技术

在.NET架构的Winform项目中引入“异步编程”思想和技术 一、异步编程引入&#xff08;1&#xff09;异步编程引入背景&#xff08;2&#xff09;异步编程程序控制流图&#xff08;3&#xff09;异步编程前置知识&#xff1a; 二、异步编程demo步骤1&#xff1a;步骤2&#xff1…

Kafka源码分析(五) - Server端 - 基于时间轮的延时组件

系列文章目录 Kafka源码分析-目录 一. 背景 Kafka内部涉及大量的"延时"操作&#xff0c;比如收到PRODUCE请求后可为副本等待一个timeout的时间后再响应客户端。 那我们讨论一个问题&#xff1a;Kafka为什么自己实现了一个延时任务组件&#xff0c;而不直接使用ja…

微信个人号开发api接口-视频号矩阵接口-VIdeosApi

友情链接&#xff1a;VIdeosApi 获取用户主页 接口地址&#xff1a; http://api.videosapi.com/finder/v2/api/finder/userPage 入参 { "appId": "{{appid}}", "lastBuffer": "", "toUserName": "v2_060000231003b2…

网络基础-华为VRP基础CLI操作

基本命令模式 华为设备的命令行模式包括用户视图和特权级模式。 用户视图&#xff08;User View&#xff09;&#xff1a;这是用户登录到华为设备时默认进入的模式。在用户视图下&#xff0c;用户可以执行一些基本的查看命令&#xff0c;但不能进行设备配置或管理。提示符通常…