wordpress开启多站点/专业网站推广软件

wordpress开启多站点,专业网站推广软件,cms系统主要功能,化妆品设计网站Python数据可视化实战:从基础图表到高级分析 数据可视化是数据分析的重要环节,通过直观的图表可以快速洞察数据规律。本文将通过5个实际案例,手把手教你使用Python的Matplotlib库完成各类数据可视化任务,涵盖条形图、堆积面积图、…

Python数据可视化实战:从基础图表到高级分析

数据可视化是数据分析的重要环节,通过直观的图表可以快速洞察数据规律。本文将通过5个实际案例,手把手教你使用Python的Matplotlib库完成各类数据可视化任务,涵盖条形图、堆积面积图、饼图、直方图等常见图表类型,并包含误差分析、颜色映射等高级技巧。


案例1:商品网购替代率分析

数据背景

分析不同商品种类的网购替代率(线上消费对线下的替代比例),数据来源:国家统计局北京调查总队抽样调查。

实现代码

# 01_online_substitution_rate.py
import matplotlib.pyplot as plt
import numpy as np# 中文显示设置
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# 数据准备
categories = ["家政服务", "交通票务", "家具", "手机配件", "计算机产品", "汽车用品", "充值服务", "个护用品","书报音像", "餐饮旅游", "家用电器", "食品饮料","日用品", "保险票务", "服装家纺", "数码产品","其他商品", "工艺品"]
substitution_rates = [0.959, 0.951, 0.935, 0.924, 0.893,0.892, 0.865, 0.863, 0.860, 0.856,0.854, 0.835, 0.826, 0.816, 0.798,0.765, 0.763, 0.671]# 可视化
plt.figure(figsize=(10, 8))
bars = plt.barh(categories, substitution_rates, color=plt.cm.viridis(np.linspace(0,1,len(categories))),height=0.7)# 添加数据标签
for bar in bars:width = bar.get_width()plt.text(width+0.01, bar.get_y()+0.3,f'{width*100:.1f}%',va='center')plt.title("各商品品类网购替代率分析", pad=20)
plt.xlabel("替代率")
plt.xlim(0.6, 1.0)
plt.grid(axis='x', alpha=0.3)
plt.tight_layout()![请添加图片描述](https://i-blog.csdnimg.cn/direct/b58d60ae0fcb4e5da2802684ccfdfca5.png)plt.show()

可视化解读

在这里插入图片描述

  • 使用水平条形图清晰展示长文本标签
  • 渐变色映射替代率高低(深色表示高替代率)
  • 右侧数据标签辅助精确读数

案例2:物流公司费用对比

数据背景

比较A/B/C三家物流公司全年费用分布,数据来源:企业年度财报。

实现代码

# 02_logistics_cost.py
months = np.arange(1,13)
cost_a = [198,215,245,222,200,236,201,253,236,200,266,290]
cost_b = [203,236,200,236,269,216,298,333,301,349,360,368]
cost_c = [185,205,226,199,238,200,250,209,246,219,253,288]plt.figure(figsize=(12,6))
plt.stackplot(months, cost_a, cost_b, cost_c,colors=['#1f77b4','#ff7f0e','#2ca02c'],alpha=0.8,labels=['A公司','B公司','C公司'])# 添加趋势线
total = np.array(cost_a) + np.array(cost_b) + np.array(cost_c)
plt.plot(months, total, color='#d62728', marker='o', linestyle=':', label='总费用')plt.title("物流公司月度费用对比", pad=20)
plt.xlabel("月份")
plt.ylabel("费用(万元)")
plt.xticks(months)
plt.legend(loc='upper left')
plt.grid(axis='y', linestyle='--')
plt.show()

可视化解读

在这里插入图片描述

  • 堆积面积图展示费用构成
  • 红色趋势线反映总费用变化
  • 半透明效果增强层次感

案例3:支付宝消费分析

数据背景

解析用户月度消费结构,数据来源:支付宝账单导出。

实现代码

# 03_alipay_bills.py
labels = ['购物','人情','餐饮','通信','日用','交通','娱乐','其他']
sizes = [800,100,1000,200,300,200,200,200]
colors = ['#4B9CD3','#FF6F61','#2E5339','#9467bd','#8c564b','#e377c2','#7f7f7f','#bcbd22']plt.figure(figsize=(10,8))
wedges, texts, autotexts = plt.pie(sizes, labels=labels,colors=colors,autopct='%1.1f%%',startangle=90,wedgeprops={'width':0.4})  # 环形图# 添加中心注释
plt.text(0, 0, "总支出\n3000元", ha='center', va='center',fontsize=14)plt.title("支付宝月度消费结构", pad=20)
plt.axis('equal')  # 正圆形
plt.show()

可视化解读

在这里插入图片描述

  • 环形饼图增强现代感
  • 中心区域突出总金额
  • 协调配色提升可读性

案例4:正态分布可视化

数据背景

展示随机数的分布规律,验证中心极限定理。

实现代码

# 04_normal_distribution.py
data = np.random.normal(loc=0, scale=1, size=1000)plt.figure(figsize=(10,6))
plt.hist(data, bins=20, density=True, alpha=0.6, color='#1f77b4')# 添加理论曲线
x = np.linspace(-4,4,100)
plt.plot(x, 1/(1*np.sqrt(2*np.pi)) * np.exp(-0.5*(x/1)**2),linewidth=2, color='#d62728')plt.title("正态分布验证", pad=20)
plt.xlabel("数值")
plt.ylabel("概率密度")
plt.grid(alpha=0.3)
plt.show()

可视化解读

在这里插入图片描述

  • 直方图展示实际分布
  • 红色曲线表示理论分布
  • 半透明处理避免视觉压迫

案例5:班级身高分析

数据背景

模拟生成班级身高数据,分析分布特征。

实现代码

# 05_class_height.py
heights = np.random.normal(loc=170, scale=5, size=40)plt.figure(figsize=(10,6))
n, bins, patches = plt.hist(heights, bins=6, color='#4B9CD3',edgecolor='white')# 添加统计信息
plt.axvline(heights.mean(), color='red', linestyle='--')
plt.text(0.7, 0.8, f'μ={heights.mean():.1f}cm\nσ={heights.std():.1f}cm',transform=plt.gca().transAxes)plt.title("班级身高分布", pad=20)
plt.xlabel("身高(cm)")
plt.ylabel("人数")
plt.show()

可视化解读

在这里插入图片描述

  • 蓝色柱形展示各区间人数
  • 红色虚线标注平均身高
  • 右上角显示统计参数

总结

本文通过5个典型案例演示了:

  • 条形图:对比类数据展示
  • 堆积图:构成分析
  • 饼图:比例呈现
  • 直方图:分布规律
  • 综合应用:数据模拟+统计分析

完整代码已托管至GitHub仓库,建议读者克隆代码库后结合实际数据修改参数练习。掌握这些可视化方法后,你可以:

  1. 制作专业的分析报告
  2. 优化数据呈现方式
  3. 快速发现数据异常
  4. 提升数据分析效率

扩展建议

  • 尝试使用Seaborn库简化复杂图表
  • 学习Plotly制作交互式可视化
  • 探索D3.js实现高级动态效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/72837.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习-分类算法】

比如将一张图片按尺寸识别分类为横向或者纵向两类就是二分类问题 设x轴为图像的宽、y轴为图像的高,那么把训练数据展现在图上就是这样的: 若增加更多的数据集有: 如果只用一条线将图中白色的点和黑色的点分开,那么: 分类的目的就是找到这条线,就可以根据点在线…

Docker build 会在本地产生巨大的文件

Docker build 会在本地产生巨大的文件, 比如 用 这个命令列出本地镜像 docker images 可见size都是很大的, 到docker目录下,看到ext4.vhdx的大小 80多G 那只能用这个命令把不用的镜像删掉了: (rmi后面是镜像id&a…

台式机电脑组装---电脑机箱与主板接线

台式机电脑组装—电脑机箱与主板接线 1、机箱连接主板的跳线一般主要有USB 2.0、USB 3.0、前置音频接口(HD_AUDIO)以及POWER SW、RESET SW、POWER LED、HDD LED四个主板跳线,这些跳线分别的含义如下。 RESET SW:机箱重启按键;注&#xff1a…

【虚幻引擎UE5】SpawnActor生成Character实例不执行AI Move To,未初始化AIController的原因和解决方法

虚幻引擎版本:5.5.4 问题描述 刚创建的Third Person项目里,定义一个BP_Enemy蓝图,拖拽到场景中产生的实例会追随玩家,但SpawnActor产生的实例会固定不动。BP_Enemy蓝图具体设计如下: BP_Enemy的Event Graph ​​ 又定义…

跨平台RTSP高性能实时播放器实现思路

跨平台RTSP高性能实时播放器实现思路 目标:局域网100ms以内超低延迟 一、引言 现有播放器(如VLC)在RTSP实时播放场景中面临高延迟(通常数秒)和资源占用大的问题。本文提出一种跨平台解决方案,通过网络层…

【Linux内核系列】:动静态库详解

🔥 本文专栏:Linux 🌸作者主页:努力努力再努力wz 💪 今日博客励志语录: 有些鸟儿是注定是关不住的,因为它们的每一片羽翼都沾满了自由的光辉 ★★★ 本文前置知识: 编译与链接的过程…

深度解读DeepSeek部署使用安全(48页PPT)(文末有下载方式)

深度解读DeepSeek:部署、使用与安全 详细资料请看本解读文章的最后内容。 引言 DeepSeek作为一款先进的人工智能模型,其部署、使用与安全性是用户最为关注的三大核心问题。本文将从本地化部署、使用方法与技巧、以及安全性三个方面,对Deep…

【详细解决】pycharm 终端出现报错:“Failed : 无法将“Failed”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。

昨天在终端一顿操作后突然打开pycharm时就开始报错: 无法将“Failed”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。 所在位置 行:1 字符: 1 Failed to act…

【电路笔记】-D型触发器

D型触发器 文章目录 D型触发器1、概述2、主从D触发器3、使用D型触发器进行分频4、D触发器作为数据锁存器5、透明数据锁存器6、总结D型触发器是一种改进的置位-复位触发器,通过增加一个反相器来防止S和R输入处于相同的逻辑电平。 1、概述 D型触发器克服了基本SR NAND门双稳态电…

智慧共享杆:城市智能化管理的 “多面手”

智慧共享杆:城市智能化管理的 “多面手” 在智慧城市建设的进程中,智慧共享杆凭借其多功能与集约化的特性,逐渐成为城市基础设施建设领域的重点关注对象。它不仅革新了传统路灯杆的固有模式,更为城市的高效管理与便捷服务开创了全…

Microchip AN1477中关于LLC数字补偿器的疑问

最近在学习Microchip的AN1477关于LLC的功率级传递函数推导及数字补偿器设计,对其中的2P2Z数字补偿器的系数有一些困惑。我在MATLAB中运行了源程序提供的VMC_LLC.m文件,发现有些地方和AN1477中的结果不一致。现在把相关有疑问的地方列举出来,也…

云盘搭建笔记

报错问题: No input file specified. 伪静态 location / {if (!-e $request_filename) { rewrite ^(.*)$ /index.php/$1 last;break;} } location / { if (!-e $request_filename) { rewrite ^(.*)$ /index.php/$1 last; break; } } 设…

如何打造安全稳定的亚马逊采购测评自养号下单系统?

在当今的电商领域,亚马逊作为全球领先的在线购物平台,其商品种类繁多,用户基数庞大,成为了众多商家和消费者的首选。而对于一些需要进行商品测评或市场调研的用户来说,拥有一个稳定、安全的亚马逊账号体系显得尤为重要…

笔记本电脑关不了机是怎么回事 这有解决方法

在快节奏的现代生活中,笔记本电脑已成为我们工作、学习和娱乐的得力助手。在使用电脑的过程中,笔记本电脑突然关不了机了,怎么回事?下面驱动人生就来讲一讲笔记本电脑不能正常关机的解决方法,有需要的可以来看看。 一、…

【动态规划篇】91. 解码方法

91. 解码方法 题目链接: 91. 解码方法 题目叙述: 一条包含字母 A-Z 的消息通过以下映射进行了 编码 : “1” -> ‘A’ “2” -> ‘B’ … “25” -> ‘Y’ “26” -> ‘Z’ 然而,在解码已编码的消息时,你…

使用【docker】+【shell】脚本半自动化部署微服务项目

一.前言 以下是一个基于 ‌Docker Shell脚本‌ 的半自动化部署方案,包含镜像构建、容器管理、网络配置和日志监控等核心功能,适用于大多数Web应用或微服务项目。 二‌.目录结构 三.脚本代码实现 1.‌Shell脚本实现 (deploy.sh) #!/bin/bash# 设置颜…

win10搭建opengl环境搭建并测试--输出立方体球体和碗型并在球体上贴图

参照本文档可以完成环境搭建和测试,如果想要快速完成环境的搭建可以获取本人的工程,包括所用到的工具链和测试工程源码获取(非免费介意务下载):链接: https://pan.baidu.com/s/1H2ejbT7kLM9ore5MqyomgA 提取码: 8s1b …

CIR-Net:用于 RGB-D 显著性目标检测的跨模态交互与优化(问题)

摘要 问题一:自模态注意力优化单元和跨模态加权优化单元什么意思? 1 优化中间件结构的作用 位置:位于编码器和解码器之间 输入:编码器提取的RGB特征,深度特征以及RGB-D特征。 输出:经过优化的RGB&…

【正点原子K210连载】第七十六章 音频FFT实验 摘自【正点原子】DNK210使用指南-CanMV版指南

第七十六章 音频FFT实验 本章将介绍CanMV下FFT的应用,通过将时域采集到的音频数据通过FFT为频域。通过本章的学习,读者将学习到CanMV下控制FFT加速器进行FFT的使用。 本章分为如下几个小节: 32.1 maix.FFT模块介绍 32.2 硬件设计 32.3 程序设…

火绒终端安全管理系统V2.0——行为管理(软件禁用+违规外联)

火绒终端安全管理系统V2.0:行为管理策略分为软件禁用和违规外联两部分,能够管理终端用户软件的使用,以及终端用户违规连接外部网络的问题。 l 软件禁用 软件禁用策略可以选择软件名单的属性、添加软件名单以及设置发现终端使用禁用软件时的…