自己做的网站显示不全/网站关键字优化技巧

自己做的网站显示不全,网站关键字优化技巧,免费wordpress商城主题下载地址,做网站怎么插入字幕引言 近年来,大语言模型(LLM)在文本生成、推理和跨模态任务中展现了惊人能力。与此同时,时间序列分析作为工业、金融、物联网等领域的核心技术,长期依赖传统统计模型(如ARIMA)或深度学习模型&a…

引言

近年来,大语言模型(LLM)在文本生成、推理和跨模态任务中展现了惊人能力。与此同时,时间序列分析作为工业、金融、物联网等领域的核心技术,长期依赖传统统计模型(如ARIMA)或深度学习模型(如LSTM)。二者的结合看似“跨界”,实则为解决时间序列的复杂问题(如长序列建模、多模态关联推理)提供了新思路。本文以技术演进为脉络,探讨LLM与时间序列结合的三大层级方法。


第一层:数据转换与直接推理

核心思路

将时间序列数据转换为文本或结构化描述,利用LLM的文本理解能力完成简单推理任务。

典型方法

  1. 数值转文本(Time Series as Text)

    • 将时间序列的数值与时间戳拼接成自然语言(如“2023年1月1日气温为25°C,1月2日为28°C…”),通过LLM生成总结或预测。
    • 示例:输入“过去5天销量依次为100、120、110、130、140,预测第6天销量”,让LLM输出数值。
  2. 规则化提示(Rule-based Prompting)

    • 结合领域知识设计模板,例如:
      “已知某股票过去7天收盘价为{price_list},根据波动率计算公式(标准差/均值),其波动率是多少?”  
      
    • LLM通过文本解析与数学推理生成结果。

优势与局限

  • 优势:无需训练,快速验证概念;适合规则明确的简单任务。
  • 局限:数值精度低、长序列处理困难、依赖人工设计模板。

第二层:时间序列嵌入与联合建模

核心思路

将时间序列编码为向量,与LLM的语义空间对齐,实现端到端复杂任务。

关键技术

  1. 跨模态编码器

    • 设计双塔模型:一个分支编码时间序列(如用CNN或Transformer),另一个分支编码文本,通过对比学习对齐特征空间。
    • 应用场景:医疗监测(心电信号+病历文本联合诊断)。
  2. 时序-语言预训练(Time-LLM)

    • 扩展LLM的Tokenizer,加入时间序列专用词汇(如趋势、周期符号)。
    • 预训练任务:时序补全、文本描述生成(如“生成传感器数据的异常报告”)。
  3. 提示工程优化

    • 动态提示:根据时序特征自动生成提示词(如检测到周期性时,提示“考虑季节性因素”)。
    • 工具调用:LLM调用外部API完成专业计算(如调用Prophet模型预测后解释结果)。

典型案例

  • Google的TimesFM:基于Transformer的时序基础模型,支持零样本预测。
  • LLM4TS框架:用LoRA微调LLM,适配时序预测任务,在ETTh1数据集上超越传统模型。

第三层:世界模型与因果推理

核心思路

利用LLM的因果推理能力,构建时间序列的“动态知识图谱”,解决复杂系统建模问题。

前沿方向

  1. 时序因果发现

    • LLM从文本数据(如运维日志)中提取因果关系,辅助构建贝叶斯网络或结构方程模型。
    • 示例:结合工厂传感器数据与维修记录,定位设备故障的根因。
  2. 多智能体仿真

    • LLM生成虚拟角色的行为时序(如模拟城市交通流量),通过强化学习优化决策。
    • 应用:供应链动态模拟、流行病传播预测。
  3. 物理信息融合

    • 将微分方程等先验知识注入LLM,约束时序生成过程的物理合理性。
    • 案例:气候模型中结合流体力学方程与LLM的异常模式识别。

挑战与展望

  • 挑战:训练数据稀缺性、数值计算稳定性、实时性要求。
  • 趋势:低代码时序分析(LLM自动生成Python代码)、具身智能(机器人动作时序规划)等。

结语

从文本接口到世界模型,LLM正逐步深入时间序列的核心战场。尽管面临噪声敏感、计算成本等难题,但其在可解释性、少样本学习和跨模态关联方面的潜力,可能重塑时序分析的未来范式。对于从业者而言,掌握“时序特征工程+LLM提示工程”的复合技能,将成为破解工业智能化痛点的关键。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/71110.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java 设计模式:软件开发的精髓与艺

目录 一、设计模式的起源二、设计模式的分类1. 创建型模式2. 结构型模式3. 行为型模式三、设计模式的实践1. 单例模式2. 工厂模式3. 策略模式四、设计模式的优势五、设计模式的局限性六、总结在软件开发的浩瀚星空中,设计模式犹如一颗颗璀璨的星辰,照亮了开发者前行的道路。它…

【基于Raft的KV共识算法】-序:Raft概述

本文目录 1.为什么会有Raft?CAP理论 2.Raft基本原理流程为什么要以日志作为中间载体? 3.实现思路任期领导选举日志同步 1.为什么会有Raft? 简单来说就是数据会随着业务和时间的增长,单机不能存的下,这个时候需要以某种…

EasyRTC嵌入式WebRTC技术与AI大模型结合:从ICE框架优化到AI推理

实时通信技术在现代社会中扮演着越来越重要的角色,从视频会议到在线教育,再到远程医疗,其应用场景不断拓展。WebRTC作为一项开源项目,为浏览器和移动应用提供了便捷的实时通信能力。而EasyRTC作为基于WebRTC的嵌入式解决方案&…

javaEE初阶————多线程初阶(5)

本期是多线程初阶的最后一篇文章了,下一篇就是多线程进阶的文章了,大家加油! 一,模拟实现线程池 我们上期说过线程池类似一个数组,我们有任务就放到线程池中,让线程池帮助我们完成任务,我们该如…

安装 cpolar 内网穿透工具的步骤

安装 cpolar 内网穿透工具的步骤 1. 下载 cpolar 软件安装包 步骤: 前往 cpolar 官方下载页面。 根据您的操作系统(Windows、macOS、Linux 等),选择对应的安装包进行下载。 2. 注册 cpolar 账号 步骤: 访问 cpolar…

Linux :进程状态

目录 1 引言 2 操作系统的资源分配 3进程状态 3.1运行状态 3.2 阻塞状态 3.3挂起状态 4.进程状态详解 4.1 运行状态R 4.2 休眠状态S 4.3深度睡眠状态D 4.4僵尸状态Z 5 孤儿进程 6 进程优先级 其他概念 1 引言 🌻在前面的文章中,我们已…

openwebUI访问vllm加载deepseek微调过的本地大模型

文章目录 前言一、openwebui安装二、配置openwebui环境三、安装vllm四、启动vllm五、启动openwebui 前言 首先安装vllm,然后加载本地模型,会起一个端口好。 在安装openwebui,去访问这个端口号。下面具体步骤的演示。 一、openwebui安装 rootautodl-co…

DeepSeek MLA(Multi-Head Latent Attention)算法浅析

目录 前言1. 从MHA、MQA、GQA到MLA1.1 MHA1.2 瓶颈1.3 MQA1.4 GQA1.5 MLA1.5.1 Part 11.5.2 Part 21.5.3 Part 3 结语参考 前言 学习 DeepSeek 中的 MLA 模块,究极缝合怪,东抄抄西抄抄,主要 copy 自苏神的文章,仅供自己参考&#…

zookeeper-docker版

Zookeeper-docker版 1 zookeeper概述 1.1 什么是zookeeper Zookeeper是一个分布式的、高性能的、开源的分布式系统的协调(Coordination)服务,它是一个为分布式应用提供一致性服务的软件。 1.2 zookeeper应用场景 zookeeper是一个经典的分…

unity学习56:旧版legacy和新版TMP文本输入框 InputField学习

目录 1 旧版文本输入框 legacy InputField 1.1 新建一个文本输入框 1.2 InputField 的子物体构成 1.3 input field的的component 1.4 input Field的属性 2 过渡 transition 3 控件导航 navigation 4 占位文本 placeholder 5 文本 text 5.1 文本内容,用户…

【弹性计算】弹性裸金属服务器和神龙虚拟化(一):功能特点

弹性裸金属服务器和神龙虚拟化(一):功能特点 特征一:分钟级交付特征二:兼容 VPC、SLB、RDS 等云平台全业务特征三:兼容虚拟机镜像特征四:云盘启动和数据云盘动态热插拔特征五:虚拟机…

腾讯云大模型知识引擎驱动的DeepSeek满血版医疗顾问大模型搭建实战

文章目录 1. 引言2. 什么是腾讯云大模型知识引擎(LKE)?核心优势功能特点应用场景 3. 模型搭建过程3.1 注册登录产品3.2 创建应用3.3 配置模型3.4 配置角色指令3.5 配置欢迎语3.6 配置知识库3.7 配置工作流3.8 启用联网搜索3.9 发布模型 4. 问…

如何在 IntelliJ IDEA 中集成 DeepSeek

如何在 IntelliJ IDEA 中集成 DeepSeek 在本教程中,我们将带您一步步完成将 DeepSeek 集成到 IntelliJ IDEA 中的过程。通过此集成,您可以在IDE中利用DeepSeek强大的功能,提高开发工作效率。 步骤 1:安装 Proxy AI 插件 首先&a…

【Maven】入门介绍 与 安装、配置

文章目录 一、Maven简介1. Maven介绍2. Maven软件工作原理模型图 二、Maven安装和配置1. Maven安装2. Maven环境配置3. Maven功能配置4. IDEA配置本地Maven软件 一、Maven简介 1. Maven介绍 https://maven.apache.org/what-is-maven.html Maven 是一款为 Java 项目管理构建、…

Java数据结构第十六期:走进二叉树的奇妙世界(五)

专栏:Java数据结构秘籍 个人主页:手握风云 目录 一、非递归实现遍历二叉树 1.1. 二叉树的前序遍历 1.2. 二叉树的中序遍历 1.3. 二叉树的后序遍历 一、非递归实现遍历二叉树 1.1. 二叉树的前序遍历 我们这里要使用栈来进行实现。我们反向思考一下为…

算法004——盛最多水的容器

力扣——盛最多水的容器点击即可跳转 当我们选择1号线和8号线时,下标为 1 和 8 形成容器的容积的高度是由 较矮的决定的,即下标为 8 的位置; 而宽度则是 1到8 之间的距离,为 8-17,此时容器的容积为 7 * 7 49。 当我…

MIT何恺明再次突破传统:分形递归架构引爆生成模型新纪元!

论文链接:https://arxiv.org/pdf/2502.17437 代码链接:https://github.com/LTH14/fractalgen 亮点直击 分形生成模型:首次将分形理论引入生成模型,提出了一种具有自相似性的递归生成框架。 递归模块化:通过递归调用生…

大模型技术:重塑未来的力量

大模型技术之所以成为当今科技领域的热点,是因为它拥有改变游戏规则的能力。以ChatGPT为例,这款由OpenAI开发的大型语言模型,首次实现了基于语言的智能涌现,推动了通用人工智能的技术飞跃和快速进化。大模型通过强大的数据处理能力…

框架模块说明 #09 日志模块_02

背景 上篇我们介绍了系统日志处理方式,也结合我们实际和日志系统集成的需求,将我们的日志文件配置成json格式。这次我们针对我们操作日志的处理进行一些介绍。 还是采用传统的aop的形式进行操作日志的保存,并按业务类型进行定义保存到mongodb…

记Android12上一个原生bug引起的system_server crash

欢迎使用Markdown编辑器 一. 现象描述 近日测试上报一个几乎必现的crash,描述如下: 现象: launcher编辑状态与锁屏解锁交互时系统概率性重启 操作步骤: 进入launcher组件编辑状态按电源键灭屏后亮屏,锁屏界面上滑解锁launcher编辑状态向右或向左滑动重…