如何让人帮忙做网站/网络营销的四种模式

如何让人帮忙做网站,网络营销的四种模式,国外购物网站怎么做,移民网站制作《机器学习数学基础》中并没有将解线性方程组作为重点,只是在第2章2.4.2节做了比较完整的概述。这是因为,如果用程序求解线性方程组,相对于高等数学教材中强调的手工求解,要简单得多了。 本文是关于线性方程组的拓展,供…

《机器学习数学基础》中并没有将解线性方程组作为重点,只是在第2章2.4.2节做了比较完整的概述。这是因为,如果用程序求解线性方程组,相对于高等数学教材中强调的手工求解,要简单得多了。

本文是关于线性方程组的拓展,供对此有兴趣的读者阅读。

1. 线性方程组的解位于一条直线

不失一般性,这里讨论三维空间的情况,对于多维空间,可以由此外推,毕竟三维空间便于想象和作图说明。

设矩阵 A = [ 1 2 4 1 3 5 ] \pmb{A}=\begin{bmatrix}1&2&4\\1&3&5\end{bmatrix} A=[112345] ,线性方程

[ 1 2 4 1 3 5 ] [ x 1 x 2 x 3 ] = [ 0 0 ] (1.1) \begin{bmatrix}1&2&4\\1&3&5\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix} \tag{1.1} [112345] x1x2x3 =[00](1.1)

的解是:

[ x 1 x 2 x 3 ] = [ 0 0 0 ] , [ 2 1 − 1 ] , [ 4 2 − 2 ] , ⋯ \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix},\begin{bmatrix}2\\1\\-1\end{bmatrix},\begin{bmatrix}4\\2\\-2\end{bmatrix},\cdots x1x2x3 = 000 , 211 , 422 ,

可以将上述解写成:

[ x 1 x 2 x 3 ] = α [ 2 1 − 1 ] (1.2) \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\alpha\begin{bmatrix}2\\1\\-1\end{bmatrix} \tag{1.2} x1x2x3 =α 211 (1.2)

其中 α \alpha α 为任意数。

很显然,(1.1)式是一条通过坐标系原点的直线。推而广之,可以说 A x = 0 \pmb{Ax}=\pmb{0} Ax=0 的解集是一条过原点的直线(记作: l 1 l_1 l1 )。

如果是非齐次线性方程组,例如:

[ 1 2 4 1 3 5 ] [ x 1 x 2 x 3 ] = [ 4 5 ] (1.3) \begin{bmatrix}1&2&4\\1&3&5\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}4\\5\end{bmatrix} \tag{1.3} [112345] x1x2x3 =[45](1.3)

解为:

[ x 1 x 2 x 3 ] = [ 2 1 0 ] , [ 0 0 1 ] , [ 4 2 − 1 ] , ⋯ \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}2\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix},\begin{bmatrix}4\\2\\-1\end{bmatrix},\cdots x1x2x3 = 210 , 001 , 421 ,

这些点的集合是一条不过原点的直线。即 A x = b \pmb{Ax}=\pmb{b} Ax=b 的解集是一条不过原点的直线(记作: l 2 l_2 l2 )。并且,这条直线与 A x = 0 \pmb{Ax}=\pmb{0} Ax=0 的解集所在直线平行。对此结论证明如下:

u \pmb{u} u v \pmb{v} v A x = b \pmb{Ax}=\pmb{b} Ax=b 的两个解,则:

A u = b A v = b \begin{split}&\pmb{Au}=\pmb{b}\\&\pmb{Av}=\pmb{b}\end{split} Au=bAv=b

上面二式相减,得:

A ( u − v ) = 0 \pmb{A}(\pmb{u}-\pmb{v})=\pmb{0} A(uv)=0

u − v \pmb{u}-\pmb{v} uv A x = 0 \pmb{Ax}=\pmb{0} Ax=0 的一个解。

u \pmb{u} u v \pmb{v} v A x = b \pmb{Ax}=\pmb{b} Ax=b 解集对应的直线上( l 2 l_2 l2 )的两个点,则 u − v \pmb{u}-\pmb{v} uv 的方向必然在直线 l 2 l_2 l2 的方向上(或者在直线 l 2 l_2 l2 上,或者在于 l 2 l_2 l2 平行的直线上)。

又因为 u − v \pmb{u}-\pmb{v} uv 也是 A x = 0 \pmb{Ax}=\pmb{0} Ax=0 的解,所以 u − v \pmb{u}-\pmb{v} uv 在过原点的直线 l 1 l_1 l1 上。

因此, l 1 l_1 l1 平行于 l 2 l_2 l2 ,即 A x = b \pmb{Ax}=\pmb{b} Ax=b 的解集所在直线不过原点,且平行于过原点的 A x = 0 \pmb{Ax}=\pmb{0} Ax=0 的解集所在直线。

2. 克拉默法则

对《机器学习数学基础》第2章2.4.2节中克拉默法则进行证明。

克拉默法则(Cramer’s rule)利用行列式计算 A x = b \pmb{Ax}=\pmb{b} Ax=b 的解,其中 A \pmb{A} A n × n n\times n n×n 方阵。

由于克拉默法则的运行效率不如高斯消元法,所以不能用于大数量方程的线性方程组,通常只用于理论推导 [ 2 ] ^{[2]} [2] ,从这个角度看,此法则除了具有理论意义之外,在计算上完全可以不用

下面的证明来自于参考文献[2],根据需要做了适当修改。

克拉默法则

n n n 阶方阵 A \pmb{A} A n n n 维向量 b \pmb{b} b ,将 A \pmb{A} A 的第 i i i 列以 b \pmb{b} b 替换,并记作 A i ( b ) \pmb{A}_i(\pmb{b}) Ai(b) ,用列向量表示为:

A i ( b ) = [ a 1 ⋯ a i − 1 b a i + 1 ⋯ a n ] \pmb{A}_i(\pmb{b})=\begin{bmatrix}\pmb{a}_1&\cdots&\pmb{a}_{i-1}&\pmb{b}&\pmb{a}_{i+1}&\cdots&\pmb{a}_n\end{bmatrix} Ai(b)=[a1ai1bai+1an]

A \pmb{A} A 可逆,即 ∣ A ∣ ≠ 0 |\pmb{A}|\ne0 A=0 ,则 A x = b \pmb{Ax}=\pmb{b} Ax=b 的解:

x i = ∣ A i ( b ) ∣ ∣ A ∣ , ( i = 1 , 2 , ⋯ , n ) \pmb{x_i}=\frac{|\pmb{A}_i(\pmb{b})|}{|\pmb{A}|},(i=1,2,\cdots,n) xi=AAi(b),(i=1,2,,n)

证明

将原方程 A x = b \pmb{Ax}=\pmb{b} Ax=b 转化为等价的 A X = B \pmb{AX}=\pmb{B} AX=B ,其中 X , B \pmb{X},\pmb{B} X,B 都是 n × n n\times n n×n 矩阵,将单位矩阵以列向量的形式表示为: I = [ e 1 ⋯ e n ] \pmb{I}=\begin{bmatrix}\pmb{e}_1&\cdots&\pmb{e}_n\end{bmatrix} I=[e1en]

以列向量 x \pmb{x} x 取代 I \pmb{I} I 的第 i i i 列,再左乘 A \pmb{A} A

A I i ( x ) = A [ e 1 ⋯ x ⋯ e n ] \pmb{AI}_i(\pmb{x})=\pmb{A}\begin{bmatrix}\pmb{e}_1&\cdots&\pmb{x}&\cdots&\pmb{e}_n\end{bmatrix} AIi(x)=A[e1xen]

参考“对矩阵乘法深入理解”中以列为单元进行矩阵乘法,上式可以进一步变换:

A I i ( x ) = [ A e 1 ⋯ A x ⋯ A e n ] = [ a 1 ⋯ b ⋯ a n ] = A i ( b ) \begin{split}\pmb{AI}_i(\pmb{x})&=\begin{bmatrix}\pmb{A}\pmb{e}_1&\cdots&\pmb{A}\pmb{x}&\cdots&\pmb{A}\pmb{e}_n\end{bmatrix}\\&=\begin{bmatrix}\pmb{a}_1&\cdots&\pmb{b}&\cdots&\pmb{a}_n\end{bmatrix}\\&=\pmb{A}_i(\pmb{b})\end{split} AIi(x)=[Ae1AxAen]=[a1ban]=Ai(b)

上式即为 A X = B \pmb{AX}=\pmb{B} AX=B ,其中 X = I i ( x ) , B = A i ( b ) \pmb{X}=\pmb{I}_i(\pmb{x}), \pmb{B}=\pmb{A}_i(\pmb{b}) X=Ii(x),B=Ai(b)

利用矩阵乘积的行列式性质,得:

∣ A X ∣ = ∣ A ∣ ∣ X ∣ = ∣ A ∣ ∣ I i ( x ) ∣ = ∣ A i ( b ) ∣ |\pmb{AX}|=|\pmb{A}||\pmb{X}|=|\pmb{A}||\pmb{I}_i(\pmb{x})|=|\pmb{A}_i(\pmb{b})| AX=A∣∣X=A∣∣Ii(x)=Ai(b)

以余子式展开计算行列式,得: ∣ I i ( x ) ∣ = x i |\pmb{I}_i(\pmb{x})|=x_i Ii(x)=xi (参阅[3]) ,所以, ∣ A ∣ x i = ∣ A i ( b ) ∣ |\pmb{A}|x_i=|\pmb{A}_i(\pmb{b})| Axi=Ai(b)

∣ A ∣ ≠ 0 |\pmb{A}|\ne0 A=0 ,则:

x i = ∣ A i ( b ) ∣ ∣ A ∣ x_i=\frac{|\pmb{A}_i(\pmb{b})|}{|\pmb{A}|} xi=AAi(b)

3. 存在性与唯一性

矩阵 A \pmb{A} A m × n m\times n m×n ,对于任意 m m m 维的非零向量 b \pmb{b} b ,线性方程组 A x = b \pmb{Ax}=\pmb{b} Ax=b 解的唯一性和存在性讨论 [ 4 ] ^{[4]} [4]

存在性

A x = b \pmb{Ax}=\pmb{b} Ax=b 有解,当且仅当 b T y = 0 \pmb{b}^T\pmb{y}=0 bTy=0 ,其中 y \pmb{y} y 为满足 A T y = 0 \pmb{A}^T\pmb{y}=\pmb0 ATy=0 的任何向量。

或曰:

b \pmb{b} b 正交于左零空间 N ( A T ) N(\pmb{A}^T) N(AT) ,则 A x = b \pmb{Ax}=\pmb{b} Ax=b 有解,反之亦然。

唯一性

A x = b \pmb{Ax}=\pmb{b} Ax=b 有唯一解(若解存在),当且仅当 A x = 0 \pmb{Ax}=\pmb{0} Ax=0 有唯一解 x = 0 \pmb{x}=\pmb{0} x=0

或曰:

若矩阵 A \pmb{A} A 零空间 N ( A ) N(\pmb{A}) N(A) 仅含零向量,则 A x = b \pmb{Ax}=\pmb{b} Ax=b 有唯一解,反之亦然。

参考文献

[1]. https://ccjou.wordpress.com/2009/03/20/axb-和-ax0-的解集合有什麼關係?/

[2]. https://ccjou.wordpress.com/2009/11/10/克拉瑪公式的證明/

[3]. 对 ∣ I i ( x ) ∣ = x i |\pmb{I}_i(\pmb{x})|=x_i Ii(x)=xi ,以 4 × 4 4\times4 4×4 矩阵为例,当 i = 2 i=2 i=2 时:

∣ 1 x 1 0 0 1 x 2 0 0 1 x 3 0 0 1 x 4 0 0 ∣ = x 2 ∣ 1 0 0 0 1 0 0 ) 1 ∣ = x 1 ⋅ 1 = x 2 \begin{vmatrix}1&x_1&0&0\\1&x_2&0&0\\1&x_3&0&0\\1&x_4&0&0\end{vmatrix}=x_2\begin{vmatrix}1&0&0\\0&1&0\\0&)&1\end{vmatrix}=x_1\cdot1=x_2 1111x1x2x3x400000000 =x2 10001)001 =x11=x2

[4]. https://ccjou.wordpress.com/2011/06/07/線性方程解的存在性與唯一性/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/70168.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Jenkins介绍

什么是Jenkins Jenkins 是一个开源的自动化服务器,主要用于持续集成和持续交付(CI/CD)。它帮助开发团队自动化构建、测试和部署软件,从而提高开发效率和软件质量。 如果一个系统是前后端分离的开发模式,在集成阶段会需…

嵌入式音视频开发(二)ffmpeg音视频同步

系列文章目录 嵌入式音视频开发(零)移植ffmpeg及推流测试 嵌入式音视频开发(一)ffmpeg框架及内核解析 嵌入式音视频开发(二)ffmpeg音视频同步 嵌入式音视频开发(三)直播协议及编码器…

iOS App的启动与优化

App的启动流程 App启动分为冷启动和热启动 冷启动:从0开始启动App热启动:App已经在内存中,但是后台还挂着,再次点击图标启动App。 一般对App启动的优化都是针对冷启动。 App冷启动可分为三个阶段: dyld&#xff1a…

DDoS技术解析

这里是Themberfue 今天我们不聊别的,我们聊聊著名的网络攻击手段之一的 DDoS,看看其背后的技术细节。 DoS 了解 DDoS 前,先来讲讲 DoS 是什么,此 DoS 而不是 DOS 操作系统啊。1996年9月6日,世界第三古老的网络服务提供…

docker安装kafka,并通过springboot快速集成kafka

目录 一、docker安装和配置Kafka 1.拉取 Zookeeper 的 Docker 镜像 2.运行 Zookeeper 容器 3.拉取 Kafka 的 Docker 镜像 4.运行 Kafka 容器 5.下载 Kafdrop 6.运行 Kafdrop 7.如果docker pull wurstmeister/zookeeper或docker pull wurstmeister/kafka下载很慢&#x…

C++ 与 Java 的对比分析:除法运算中的错误处理

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: Java 文章目录 💯前言💯C中的除法错误处理💯Java中的除法错误处理💯C与Java错误处理的对比💯错误处理的优化和实践💯小结 💯前言 在…

LLM之循环神经网络(RNN)

在人工智能的领域中,神经网络是推动技术发展的核心力量。今天,让我们深入探讨循环神经网络(RNN) 一、神经网络基础 (1)什么是神经网络 神经网络,又称人工神经网络,其设计灵感源于人…

SQL sever数据导入导出实验

1.创建数据库TCP-H (1)右键“数据库”,点击“新建数据库”即可 (2)用sql语言创建,此处以创建数据库DB_test为例,代码如下: use master;go--检查在当前服务器系统中的所有数据里面…

让编程变成一种享受-明基RD320U显示器

引言 作为一名有着多年JAVA开发经验的从业者,在工作过程中,显示器的重要性不言而喻。它不仅是我们与代码交互的窗口,更是影响工作效率和体验的关键因素。在多年的编程生涯中,我遇到过各种各样的问题。比如,在进行代码…

计算机网络(涵盖OSI,TCP/IP,交换机,路由器,局域网)

一、网络通信基础 (一)网络通信的概念 网络通信是指终端设备之间通过计算机网络进行的信息传递与交流。它类似于现实生活中的物品传递过程:数据(物品)被封装成报文(包裹),通过网络…

✨2.快速了解HTML5的标签类型

✨✨HTML5 的标签类型丰富多样&#xff0c;每种类型都有其独特的功能和用途&#xff0c;以下是一些常见的 HTML5 标签类型介绍&#xff1a; &#x1f98b;结构标签 &#x1faad;<html>&#xff1a;它是 HTML 文档的根标签&#xff0c;所有其他标签都包含在这个标签内&am…

eNSP防火墙综合实验

一、实验拓扑 二、ip和安全区域配置 1、防火墙ip和安全区域配置 新建两个安全区域 ip配置 Client1 Client2 电信DNS 百度web-1 联通DNS 百度web-2 R2 R1 三、DNS透明代理相关配置 1、导入运营商地址库 2、新建链路接口 3、配置真实DNS服务器 4、创建虚拟DNS服务器 5、配置D…

Linux 配置交换空间(Swap)解决内存不足

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall ︱vue3-element-admin︱youlai-boot︱vue-uniapp-template &#x1f33a; 仓库主页&#xff1a; GitCode︱ Gitee ︱ Github &#x1f496; 欢迎点赞 &#x1f44d; 收藏 ⭐评论 …

个人shell脚本分享

在周一到周五做增量备份&#xff0c;在周六周日做完全备份 #!/bin/bash定义变量 SRC“/path/to/source” # 源目录 BKUP“/backup” # 备份主目录 FUL“KaTeX parse error: Expected EOF, got # at position 22: …ull" #̲ 完全备份目录 INC"BKUP/inc” # 增量备份…

Django 5 实用指南(一)安装与配置

1.1 Django5的背景与发展 Django 自从2005年由Adrian Holovaty和Simon Willison在 Lawrence Journal-World 新闻网站上首次发布以来&#xff0c;Django 一直是 Web 开发领域最受欢迎的框架之一。Django 框架经历了多个版本的演进&#xff0c;每次版本更新都引入了新功能、改进了…

百度搜索融合 DeepSeek 满血版,开启智能搜索新篇

百度搜索融合 DeepSeek 满血版&#xff0c;开启智能搜索新篇 &#x1f680; &#x1f539; 一、百度搜索全量接入 DeepSeek &#x1f539; 百度搜索迎来重要升级&#xff0c;DeepSeek 满血版全面上线&#xff01;&#x1f389; 用户在百度 APP 搜索后&#xff0c;点击「AI」即…

RabbitMQ服务异步通信

消息队列在使用过程中&#xff0c;面临着很多实际问题需要思考&#xff1a; 1. 消息可靠性 消息从发送&#xff0c;到消费者接收&#xff0c;会经理多个过程&#xff1a; 其中的每一步都可能导致消息丢失&#xff0c;常见的丢失原因包括&#xff1a; 发送时丢失&#xff1a; 生…

【教程】MySQL数据库学习笔记(七)——多表操作(持续更新)

写在前面&#xff1a; 如果文章对你有帮助&#xff0c;记得点赞关注加收藏一波&#xff0c;利于以后需要的时候复习&#xff0c;多谢支持&#xff01; 【MySQL数据库学习】系列文章 第一章 《认识与环境搭建》 第二章 《数据类型》 第三章 《数据定义语言DDL》 第四章 《数据操…

胶囊网络动态路由算法:突破CNN空间局限性的数学原理与工程实践

一、CNN的空间局限性痛点解析 传统CNN的瓶颈&#xff1a; 池化操作导致空间信息丢失&#xff08;最大池化丢弃85%激活值&#xff09;无法建模层次空间关系&#xff08;旋转/平移等变换不敏感&#xff09;局部感受野限制全局特征整合 示例对比&#xff1a; # CNN最大池化示例…

#渗透测试#批量漏洞挖掘#Apache Log4j反序列化命令执行漏洞

免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。 目录 Apache Log4j反序列化命令执行漏洞 一、…