NCSN
p σ ( x ~ ∣ x ) : = N ( x ~ ; x , σ 2 I ) p_\sigma(\tilde{\mathrm{x}}|\mathrm{x}) := \mathcal{N}(\tilde{\mathrm{x}}; \mathrm{x}, \sigma^2\mathbf{I}) pσ(x~∣x):=N(x~;x,σ2I)
p σ ( x ~ ) : = ∫ p d a t a ( x ) p σ ( x ~ ∣ x ) d x p_\sigma(\mathrm{\tilde{x}}) := \int p_{data}(\mathrm{x})p_\sigma(\mathrm{\tilde{x}}|\mathrm{x})d\mathrm{x} pσ(x~):=∫pdata(x)pσ(x~∣x)dx
p d a t a ( x ) p_{data}(x) pdata(x)表示目标数据分布。 σ m i n = σ 1 < σ 2 < ⋅ ⋅ ⋅ < σ N = σ m a x \sigma_{\mathrm{min}}=\sigma_1<\sigma_2<\cdot\cdot\cdot<\sigma_N=\sigma_{\mathrm{max}} σmin=σ1<σ2<⋅⋅⋅<σN=σmax
σ m i n \sigma_{\mathrm{min}} σmin足够小,以至于 p σ m i n ( x ) ≈ p d a t a ( x ) ) p_{\sigma_{\mathrm{min}}}(\mathrm{x}) \approx p_{data}(\mathrm{x})) pσmin(x)≈pdata(x)), σ m a x \sigma_{\mathrm{max}} σmax足够大,以至于 p σ m i n ( x ) ) ≈ N ( x ; 0 , σ m a x 2 I ) p_{\sigma_{\mathrm{min}}}(\mathrm{x})) \approx \mathcal{N}(\mathbf{x}; \mathbf{0}, \sigma^2_{\mathrm{max}}\mathbf{I}) pσmin(x))≈N(x;0,σmax2I)
θ ∗ = arg min θ ∑ i = 1 N σ i 2 E x ∼ p d a t a ( x ) E x ~ ∼ p σ i ( x ~ ∣ x ) [ ∣ ∣ s θ ( x ~ , σ i ) − ▽ x ~ l o g p σ ~ ( x ~ ∣ x ) ∣ ∣ 2 2 ] \theta^{*} = \argmin_\theta \sum_{i=1}^N \sigma_i^2 \mathbb{E}_{\mathrm{x}\sim p_{data}(\mathrm{x})}\mathbb{E}_{\tilde{\mathrm{x}}\sim p_{\sigma_i}(\tilde{\mathrm{x}}|\mathrm{x})} \Big[ ||s_\theta(\tilde{\mathrm{x}}, \sigma_i) - \mathbf{\triangledown}_{\tilde{\mathrm{x}}}\mathrm{log}p_{\tilde{\sigma}}(\tilde{\mathrm{x}}|\mathrm{x})||^2_2\Big] θ∗=θargmini=1∑Nσi2Ex∼pdata(x)Ex~∼pσi(x~∣x)[∣∣sθ(x~,σi)−▽x~logpσ~(x~∣x)∣∣22]
模型训练完毕后,执行M步Langevin MCMC采样:
x i m = x i m − 1 + ϵ i s θ ∗ ( x i m − 1 , σ i ) + 2 ϵ i z i m , m = 1 , 2 , ⋅ ⋅ ⋅ , M x_i^m = x_i^{m-1} + \epsilon_i s_{\theta^{*}}(x_i^{m-1}, \sigma_i) + \sqrt{2\epsilon_i}z_i^m, \quad m=1,2,\cdot\cdot\cdot, M xim=xim−1+ϵisθ∗(xim−1,σi)+2ϵizim,m=1,2,⋅⋅⋅,M
ϵ i > 0 \epsilon_i>0 ϵi>0为步长, z i m z_i^m zim是标准正态分布。上述采样过程重复 i = N , N − 1 , ⋅ ⋅ ⋅ , 1 i=N, N-1, \cdot\cdot\cdot, 1 i=N,N−1,⋅⋅⋅,1,也就是说对于每个noise level,执行N步,直至样本收敛至当前noise level的最佳位置。
x N 0 ∼ N ( x ∣ 0 , σ m a x 2 I ) , x i 0 = x i + 1 M w h e n i < N x_N^0 \sim \mathcal{N}(\mathrm{x}|0, \sigma^2_{max}\mathbf{I}), \ x_i^0 = x_{i+1}^M \mathrm{when}\ i < N xN0∼N(x∣0,σmax2I), xi0=xi+1Mwhen i<N
样例代码如下:
import torch
def langevin_sampling(score_network, noise_levels, num_steps, step_size, batch_size, device):# 初始化样本,从标准正态分布中采样x = torch.randn(batch_size, 3, 32, 32).to(device)# 多级噪声采样,从高噪声到低噪声逐步采样,最终得到逼近目标分布的样本for sigma in noise_levels:print(f"Sampling at noise level: {sigma}")# Langevin动力学迭代for _ in range(num_steps):# 计算分布函数梯度(由分数网络预测)with torch.no_grad():grad = score_network(x, sigma) # 输入当前样本和噪声水平# 梯度上升步x = x + step_size * grad# 添加随机噪声步noise = torch.randn_like(x) * (2 * step_size) ** 0.5x = x + noisereturn xclass DummyScoreNet(nn.Module):def forward(self, x, sigma):return -x / (sigma ** 2)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
score_network = DummyScoreNet().to(device)noise_levels = [50.0, 25.0, 10.0, 5.0, 1.0]
num_steps = 50
step_size = 0.1
batch_size = 64samples = langevin_sampling(score_network,noise_levels,num_steps,step_size,batch_size,device)