【LLM-agent】(task4)搜索引擎Agent

note

  • 新增工具:搜索引擎Agent

文章目录

  • note
  • 一、搜索引擎Agent
  • Reference

一、搜索引擎Agent

import os
from dotenv import load_dotenv# 加载环境变量
load_dotenv()
# 初始化变量
base_url = None
chat_model = None
api_key = None# 使用with语句打开文件,确保文件使用完毕后自动关闭
env_path = "/Users/guomiansheng/Desktop/LLM/llm_app/wow-agent/.env.txt"
with open(env_path, 'r') as file:# 逐行读取文件for line in file:# 移除字符串头尾的空白字符(包括'\n')line = line.strip()# 检查并解析变量if "base_url" in line:base_url = line.split('=', 1)[1].strip().strip('"')elif "chat_model" in line:chat_model = line.split('=', 1)[1].strip().strip('"')elif "ZHIPU_API_KEY" in line:api_key = line.split('=', 1)[1].strip().strip('"')elif "BOCHA_API_KEY" in line:BOCHA_API_KEY = line.split('=', 1)[1].strip().strip('"')# 打印变量以验证
print(f"base_url: {base_url}")
print(f"chat_model: {chat_model}")
print(f"ZHIPU_API_KEY: {api_key}")from openai import OpenAI
client = OpenAI(api_key = api_key,base_url = base_url
)
print(client)def get_completion(prompt):response = client.chat.completions.create(model="glm-4-flash",  # 填写需要调用的模型名称messages=[{"role": "user", "content": prompt},],)return response.choices[0].message.content# 一、定义上个task的llm
from openai import OpenAI
from pydantic import Field  # 导入Field,用于Pydantic模型中定义字段的元数据
from llama_index.core.llms import (CustomLLM,CompletionResponse,LLMMetadata,
)
from llama_index.core.embeddings import BaseEmbedding
from llama_index.core.llms.callbacks import llm_completion_callback
from typing import List, Any, Generator# 定义OurLLM类,继承自CustomLLM基类
class OurLLM(CustomLLM):api_key: str = Field(default=api_key)base_url: str = Field(default=base_url)model_name: str = Field(default=chat_model)client: OpenAI = Field(default=None, exclude=True)  # 显式声明 client 字段def __init__(self, api_key: str, base_url: str, model_name: str = chat_model, **data: Any):super().__init__(**data)self.api_key = api_keyself.base_url = base_urlself.model_name = model_nameself.client = OpenAI(api_key=self.api_key, base_url=self.base_url)  # 使用传入的api_key和base_url初始化 client 实例@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""return LLMMetadata(model_name=self.model_name,)@llm_completion_callback()def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:response = self.client.chat.completions.create(model=self.model_name, messages=[{"role": "user", "content": prompt}])if hasattr(response, 'choices') and len(response.choices) > 0:response_text = response.choices[0].message.contentreturn CompletionResponse(text=response_text)else:raise Exception(f"Unexpected response format: {response}")@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> Generator[CompletionResponse, None, None]:response = self.client.chat.completions.create(model=self.model_name,messages=[{"role": "user", "content": prompt}],stream=True)try:for chunk in response:chunk_message = chunk.choices[0].deltaif not chunk_message.content:continuecontent = chunk_message.contentyield CompletionResponse(text=content, delta=content)except Exception as e:raise Exception(f"Unexpected response format: {e}")llm = OurLLM(api_key=api_key, base_url=base_url, model_name=chat_model)
# print(llm)
# 测试模型是否能正常回答
response = llm.stream_complete("你是谁?")
for chunk in response:print(chunk, end="", flush=True)# 二、搜索工具
from llama_index.core.tools import FunctionTool
import requests
# 需要先把BOCHA_API_KEY填写到.env文件中去。
# BOCHA_API_KEY = os.getenv('BOCHA_API_KEY')# 定义Bocha Web Search工具
def bocha_web_search_tool(query: str, count: int = 8) -> str:"""使用Bocha Web Search API进行联网搜索,返回搜索结果的字符串。参数:- query: 搜索关键词- count: 返回的搜索结果数量返回:- 搜索结果的字符串形式"""url = 'https://api.bochaai.com/v1/web-search'headers = {'Authorization': f'Bearer {BOCHA_API_KEY}',  # 请替换为你的API密钥'Content-Type': 'application/json'}data = {"query": query,"freshness": "noLimit", # 搜索的时间范围,例如 "oneDay", "oneWeek", "oneMonth", "oneYear", "noLimit""summary": True, # 是否返回长文本摘要总结"count": count}response = requests.post(url, headers=headers, json=data)if response.status_code == 200:# 返回给大模型的格式化的搜索结果文本# 可以自己对博查的搜索结果进行自定义处理return str(response.json())else:raise Exception(f"API请求失败,状态码: {response.status_code}, 错误信息: {response.text}")search_tool = FunctionTool.from_defaults(fn=bocha_web_search_tool)
from llama_index.core.agent import ReActAgent
agent = ReActAgent.from_tools([search_tool], llm=llm, verbose=True, max_iterations=10)# 测试用例
query = "阿里巴巴2024年的ESG报告主要讲了哪些内容?"
response = agent.chat(f"请帮我搜索以下内容:{query}")
print(response)

Reference

[1] https://github.com/datawhalechina/wow-agent
[2] https://www.datawhale.cn/learn/summary/86
[3] https://open.bochaai.com/
[4] https://github.com/run-llama/llama_index/issues/14843
[5] 官方文档:https://docs.cloud.llamaindex.ai/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/67797.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【自然语言处理(NLP)】基于Transformer架构的预训练语言模型:BERT 训练之数据集处理、训练代码实现

文章目录 介绍BERT 训练之数据集处理BERT 原理及模型代码实现数据集处理导包加载数据生成下一句预测任务的数据从段落中获取nsp数据生成遮蔽语言模型任务的数据从token中获取mlm数据将文本转换为预训练数据集创建Dataset加载WikiText-2数据集 BERT 训练代码实现导包加载数据构建…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.5 高级索引应用:图像处理中的区域提取

2.5 高级索引应用:图像处理中的区域提取 目录/提纲 #mermaid-svg-BI09xc20YqcpUam7 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-BI09xc20YqcpUam7 .error-icon{fill:#552222;}#mermaid-svg-BI09xc20…

通过Redisson构建延时队列并实现注解式消费

目录 一、序言二、延迟队列实现1、Redisson延时消息监听注解和消息体2、Redisson延时消息发布器3、Redisson延时消息监听处理器 三、测试用例四、结语 一、序言 两个月前接了一个4万的私活,做一个线上商城小程序,在交易过程中不可避免的一个问题就是用户…

Baklib构建高效协同的基于云的内容中台解决方案

内容概要 随着云计算技术的飞速发展,内容管理的方式也在不断演变。企业面临着如何在数字化转型过程中高效管理和协同处理内容的新挑战。为应对这些挑战,引入基于云的内容中台解决方案显得尤为重要。 Baklib作为创新型解决方案提供商,致力于…

deepseek+vscode自动化测试脚本生成

近几日Deepseek大火,我这里也尝试了一下,确实很强。而目前vscode的AI toolkit插件也已经集成了deepseek R1,这里就介绍下在vscode中利用deepseek帮助我们完成自动化测试脚本的实践分享 安装AI ToolKit并启用Deepseek 微软官方提供了一个针对AI辅助的插件,也就是 AI Toolk…

电介质超表面中指定涡旋的非线性生成

涡旋光束在众多领域具有重要应用,但传统光学器件产生涡旋光束的方式限制了其在集成系统中的应用。超表面的出现为涡旋光束的产生带来了新的可能性,尤其是在非线性领域,尽管近些年来已经有一些研究,但仍存在诸多问题,如…

基于Springboot+mybatis+mysql+html图书管理系统2

基于Springbootmybatismysqlhtml图书管理系统2 一、系统介绍二、功能展示1.用户登陆2.用户主页3.图书查询4.还书5.个人信息修改6.图书管理(管理员)7.学生管理(管理员)8.废除记录(管理员) 三、数据库四、其它…

本地部署DeepSeek方法

本地部署完成后的效果如下图,整体与chatgpt类似,只是模型在本地推理。 我们在本地部署主要使用两个工具: ollamaopen-webui ollama是在本地管理和运行大模型的工具,可以直接在terminal里和大模型对话。open-webui是提供一个类…

游戏引擎 Unity - Unity 启动(下载 Unity Editor、生成 Unity Personal Edition 许可证)

Unity Unity 首次发布于 2005 年,属于 Unity Technologies Unity 使用的开发技术有:C# Unity 的适用平台:PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域:开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…

【开源免费】基于Vue和SpringBoot的公寓报修管理系统(附论文)

本文项目编号 T 186 ,文末自助获取源码 \color{red}{T186,文末自助获取源码} T186,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…

《苍穹外卖》项目学习记录-Day11订单统计

根据起始时间和结束时间,先把begin放入集合中用while循环当begin不等于end的时候,让begin加一天,这样就把这个区间内的时间放到List集合。 查询每天的订单总数也就是查询的时间段是大于当天的开始时间(0点0分0秒)小于…

【python】python油田数据分析与可视化(源码+数据集)【独一无二】

👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。 【python】python油田数据分析与可视化&#xff08…

FBX SDK的使用:基础知识

Windows环境配置 FBX SDK安装后,目录下有三个文件夹: include 头文件lib 编译的二进制库,根据你项目的配置去包含相应的库samples 官方使用案列 动态链接 libfbxsdk.dll, libfbxsdk.lib是动态库,需要在配置属性->C/C->预…

一文讲解HashMap线程安全相关问题(上)

HashMap不是线程安全的,主要有以下几个问题: ①、多线程下扩容会死循环。JDK1.7 中的 HashMap 使用的是头插法插入元素,在多线程的环境下,扩容的时候就有可能导致出现环形链表,造成死循环。 JDK 8 时已经修复了这个问…

python学习——常用的内置函数汇总

文章目录 类型转换函数数学函数常用的迭代器操作函数常用的其他内置函数 类型转换函数 数学函数 常用的迭代器操作函数 实操: from cv2.gapi import descr_oflst [55, 42, 37, 2, 66, 23, 18, 99]# (1) 排序操作 asc_lst sorted(lst) # 升序 desc_lst sorted(l…

MySQL数据库环境搭建

下载MySQL 官网:https://downloads.mysql.com/archives/installer/ 下载社区版就行了。 安装流程 看b站大佬的视频吧:https://www.bilibili.com/video/BV12q4y1477i/?spm_id_from333.337.search-card.all.click&vd_source37dfd298d2133f3e1f3e3c…

如何用微信小程序写春联

​ 生活没有模板,只需心灯一盏。 如果笑能让你释然,那就开怀一笑;如果哭能让你减压,那就让泪水流下来。如果沉默是金,那就不用解释;如果放下能更好地前行,就别再扛着。 一、引入 Vant UI 1、通过 npm 安装 npm i @vant/weapp -S --production​​ 2、修改 app.json …

[SAP ABAP] 静态断点的使用

在 ABAP 编程环境中,静态断点通过关键字BREAK-POINT实现,当程序执行到这一语句时,会触发调试器中断程序的运行,允许开发人员检查当前状态并逐步跟踪后续代码逻辑 通常情况下,在代码的关键位置插入静态断点可以帮助开发…

96,【4】 buuctf web [BJDCTF2020]EzPHP

进入靶场 查看源代码 GFXEIM3YFZYGQ4A 一看就是编码后的 1nD3x.php 访问 得到源代码 <?php // 高亮显示当前 PHP 文件的源代码&#xff0c;用于调试或展示代码结构 highlight_file(__FILE__); // 关闭所有 PHP 错误报告&#xff0c;防止错误信息泄露可能的安全漏洞 erro…

基于深度学习的输电线路缺陷检测算法研究(论文+源码)

输电线路关键部件的缺陷检测对于电网安全运行至关重要&#xff0c;传统方法存在效率低、准确性不高等问题。本研究探讨了利用深度学习技术进行输电线路关键组件的缺陷检测&#xff0c;目的是提升检测的效率与准确度。选用了YOLOv8模型作为基础&#xff0c;并通过加入CA注意力机…