MapReduce简单应用(一)——WordCount

目录

  • 1. 执行过程
    • 1.1 分割
    • 1.2 Map
    • 1.3 Combine
    • 1.4 Reduce
  • 2. 代码和结果
    • 2.1 pom.xml中依赖配置
    • 2.2 工具类util
    • 2.3 WordCount
    • 2.4 结果
  • 参考

1. 执行过程

  假设WordCount的两个输入文本text1.txt和text2.txt如下。

Hello World
Bye World
Hello Hadoop
Bye Hadoop

1.1 分割

  将每个文件拆分成split分片,由于测试文件比较小,所以每个文件为一个split,并将文件按行分割形成<key,value>对,如下图所示。这一步由MapReduce自动完成,其中key值为偏移量,由MapReduce自动计算出来,包括回车所占的字符数。
在这里插入图片描述

1.2 Map

  将分割好的<key,value>对交给用户定义的Map方法处理,生成新的<key,value>对。处理流程为先对每一行文字按空格拆分为多个单词,每个单词出现次数设初值为1,key为某个单词,value为1,如下图所示。
在这里插入图片描述

1.3 Combine

  得到Map方法输出的<key,value>对后,Mapper将它们按照key值进行升序排列,并执行Combine合并过程,将key值相同的value值累加,得到Mapper的最终输出结果,并写入磁盘,如下图所示。
在这里插入图片描述

1.4 Reduce

  Reducer先对从Mapper接受的数据进行排序,并将key值相同的value值合并到一个list列表中,再交由用户自定义的Reduce方法进行汇总处理,得到新的<key,value>对,并作为WordCount的输出结果,存入HDFS,如下图所示。
在这里插入图片描述

2. 代码和结果

2.1 pom.xml中依赖配置

	<dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.11</version><scope>test</scope></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.3.6</version><exclusions><exclusion><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId></exclusion></exclusions></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-core</artifactId><version>3.3.6</version><type>pom</type></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-jobclient</artifactId><version>3.3.6</version></dependency></dependencies>

2.2 工具类util

  util.removeALL的功能是删除hdfs上的指定输出路径(如果存在的话),而util.showResult的功能是打印wordcount的结果。

import java.net.URI;
import java.util.regex.Matcher;
import java.util.regex.Pattern;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;public class util {public static FileSystem getFileSystem(String uri, Configuration conf) throws Exception {URI add = new URI(uri);return FileSystem.get(add, conf);}public static void removeALL(String uri, Configuration conf, String path) throws Exception {FileSystem fs = getFileSystem(uri, conf);if (fs.exists(new Path(path))) {boolean isDeleted = fs.delete(new Path(path), true);System.out.println("Delete Output Folder? " + isDeleted);}}public static void  showResult(String uri, Configuration conf, String path) throws Exception {FileSystem fs = getFileSystem(uri, conf);String regex = "part-r-";Pattern pattern = Pattern.compile(regex);if (fs.exists(new Path(path))) {FileStatus[] files = fs.listStatus(new Path(path));for (FileStatus file : files) {Matcher matcher = pattern.matcher(file.getPath().toString());if (matcher.find()) {FSDataInputStream openStream = fs.open(file.getPath());IOUtils.copyBytes(openStream, System.out, 1024);openStream.close();}}}}
}

2.3 WordCount

  正常来说,MapReduce编程都是要把代码打包成jar文件,然后用hadoop jar jar文件名 主类名称 输入路径 输出路径。下面代码中直接给出了输入和输出路径,可以直接运行。

import java.io.IOException;
import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class App {public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {System.out.println(key + " " + value);Text keyOut;IntWritable valueOut = new IntWritable(1);StringTokenizer token = new StringTokenizer(value.toString());while (token.hasMoreTokens()) {keyOut = new Text(token.nextToken());context.write(keyOut, valueOut);}}}public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable value : values) {sum += value.get();}context.write(key, new IntWritable(sum));} }public static void main(String[] args) throws Exception {Configuration conf = new Configuration();String[] myArgs = {"file:///home/developer/CodeArtsProjects/WordCount/text1.txt", "file:///home/developer/CodeArtsProjects/WordCount/text2.txt", "hdfs://localhost:9000/user/developer/wordcount/output"};util.removeALL("hdfs://localhost:9000", conf, myArgs[myArgs.length - 1]);Job job = Job.getInstance(conf, "wordcount");job.setJarByClass(App.class);job.setMapperClass(MyMapper.class);job.setReducerClass(MyReducer.class);job.setCombinerClass(MyReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);for (int i = 0; i < myArgs.length - 1; i++) {FileInputFormat.addInputPath(job, new Path(myArgs[i]));}FileOutputFormat.setOutputPath(job, new Path(myArgs[myArgs.length - 1]));int res = job.waitForCompletion(true) ? 0 : 1;if (res == 0) {System.out.println("WordCount结果:");util.showResult("hdfs://localhost:9000", conf, myArgs[myArgs.length - 1]);}System.exit(res);}
}

2.4 结果

在这里插入图片描述

参考

吴章勇 杨强著 大数据Hadoop3.X分布式处理实战

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/67578.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Dest1ny漏洞库:用友 U8 Cloud ReleaseRepMngAction SQL 注入漏洞(CNVD-2024-33023)

大家好&#xff0c;今天是Dest1ny漏洞库的专题&#xff01;&#xff01; 会时不时发送新的漏洞资讯&#xff01;&#xff01; 大家多多关注&#xff0c;多多点赞&#xff01;&#xff01;&#xff01; 0x01 产品简介 用友U8 Cloud是用友推出的新一代云ERP&#xff0c;主要聚…

使用where子句筛选记录

默认情况下,SearchCursor将返回一个表或要素类的所有行.然而在很多情况下,常常需要某些条件来限制返回行数. 操作方法: 1.打开IDLE,加载先前编写的SearchCursor.py脚本 2.添加where子句,更新SearchCursor()函数,查找记录中有<>文本的<>字段 with arcpy.da.Searc…

使用国内镜像加速器解决 Docker Hub 拉取镜像慢或被屏蔽的问题

一、问题背景 Docker Hub 是 Docker 默认的镜像仓库&#xff0c;但由于网络限制&#xff0c;国内用户直接拉取镜像可能面临以下问题&#xff1a; 下载速度极慢&#xff08;尤其是大镜像&#xff09;。连接超时或完全被屏蔽&#xff08;部分网络环境&#xff09;。依赖国外源的…

AI大模型开发原理篇-4:神经概率语言模型NPLM

神经概率语言模型&#xff08;NPLM&#xff09;概述 神经概率语言模型&#xff08;Neural Probabilistic Language Model, NPLM&#xff09; 是一种基于神经网络的语言建模方法&#xff0c;它将传统的语言模型和神经网络结合在一起&#xff0c;能够更好地捕捉语言中的复杂规律…

2.1.2 Bayer阵列与去马赛克

文章目录 Bayer阵列去马赛克方法 Bayer阵列 由于传感器只能感受到光的强度&#xff0c;而无法感知颜色&#xff0c;所以需要用红、绿、蓝颜色的滤光片将光中的R、G、B亮度滤出&#xff0c;再通过R、G、B的组合得到各种色彩。Bayer阵列是使用一个传感器获得彩色图像的方法&#…

红黑树的学习

红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制&#xff0c;红黑树确保没有一条路径会比其他路径长出俩倍&#xff0c;因…

2025年01月31日Github流行趋势

项目名称&#xff1a;Qwen2.5项目地址url&#xff1a;https://github.com/QwenLM/Qwen2.5项目语言&#xff1a;Shell历史star数&#xff1a;13199今日star数&#xff1a;459项目维护者&#xff1a;jklj077, JustinLin610, bug-orz, huybery, JianxinMa项目简介&#xff1a;Qwen…

Java基础面试题总结(题目来源JavaGuide)

问题1&#xff1a;Java 中有哪 8 种基本数据类型&#xff1f;它们的默认值和占用的空间大小知道不&#xff1f; 说说这 8 种基本数据类型对 应的包装类型。 在 Java 中&#xff0c;有 8 种基本数据类型&#xff08;Primitive Types&#xff09;&#xff1a; 基本数据类型关键…

人工智能|基本概念|人工智能相关重要概念---AI定义以及模型相关知识

一、 前言&#xff1a; 最近deepseek&#xff08;深度求索&#xff09;公司的开源自然语言处理模型非常火爆。 本人很早就对人工智能比较感兴趣&#xff0c;但由于种种原因没有过多的深入此领域&#xff0c;仅仅是做了一点初步的了解&#xff0c;借着这个deepseek&#xff0…

Python GIL(全局解释器锁)机制对多线程性能影响的深度分析

在Python开发领域&#xff0c;GIL&#xff08;Global Interpreter Lock&#xff09;一直是一个广受关注的技术话题。在3.13已经默认将GIL去除&#xff0c;在详细介绍3.13的更亲前&#xff0c;我们先要留了解GIL的技术本质、其对Python程序性能的影响。本文将主要基于CPython&am…

从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(绘图设备封装)

目录 图像层的底层抽象——绘图设备抽象 如何抽象一个绘图设备&#xff1f; 桥接绘图设备&#xff0c;特化为OLED设备 题外话&#xff1a;设备的属性&#xff0c;与设计一个相似函数化简的通用办法 使用函数指针来操作设备 总结一下 图像层的底层抽象——绘图设备抽象 在…

Git 版本控制:基础介绍与常用操作

目录 Git 的基本概念 Git 安装与配置 Git 常用命令与操作 1. 初始化本地仓库 2. 版本控制工作流程 3. 分支管理 4. 解决冲突 5. 回退和撤销 6. 查看提交日志 前言 在软件开发过程中&#xff0c;开发者常常需要在现有程序的基础上进行修改和扩展。但如果不加以管理&am…

(笔记+作业)书生大模型实战营春节卷王班---L0G2000 Python 基础知识

学员闯关手册&#xff1a;https://aicarrier.feishu.cn/wiki/QtJnweAW1iFl8LkoMKGcsUS9nld 课程视频&#xff1a;https://www.bilibili.com/video/BV13U1VYmEUr/ 课程文档&#xff1a;https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/Python 关卡作业&#xff1a;htt…

仿真设计|基于51单片机的高速路口货车称重系统仿真

目录 具体实现功能 设计介绍 51单片机简介 资料内容 仿真实现&#xff08;protues8.7&#xff09; 程序&#xff08;Keil5&#xff09; 全部内容 资料获取 具体实现功能 &#xff08;1&#xff09;LCD1602液晶第一行显示当前的车辆重量&#xff0c;第二行显示车辆重量…

Ubuntu Server 安装 XFCE4桌面

Ubuntu Server没有桌面环境&#xff0c;一些软件有桌面环境使用起来才更加方便&#xff0c;所以我尝试安装桌面环境。常用的桌面环境有&#xff1a;GNOME、KDE Plasma、XFCE4等。这里我选择安装XFCE4桌面环境&#xff0c;主要因为它是一个极轻量级的桌面环境&#xff0c;适合内…

2025:影刀RPA使用新实践--CSDN博客下载

文章目录 一键CSDN博客下载器程序说明指导说明使用步骤 获取方法 一键CSDN博客下载器 程序说明 配置信息&#xff1a;CSDN账号&#xff08;手机号/邮箱/用户名&#xff09;、密码、博客文件类型支持markdown格式、html格式&#xff08;默认值markdown格式&#xff09;、博客保…

深度学习的应用

目录 一、机器视觉 1.1 应用场景 1.2 常见的计算机视觉任务 1.2.1 图像分类 1.2.2 目标检测 1.2.3 图像分割 二、自然语言处理 三、推荐系统 3.1 常用的推荐系统算法实现方案 四、图像分类实验补充 4.1 CIFAR-100 数据集实验 实验代码 4.2 CIFAR-10 实验代码 深…

前端js高级25.1.30

原型&#xff1a;函数的组成结构 通过这个图我们需要知道。 假设我们创建了一个Foo函数。 规则&#xff1a;Function.protoType是函数显示原型。__proto__是隐式对象。 Function、Object、Foo函数的__proto__指向了Function.protoType说明。这三个都依托function函数来创建。…

android 音视频系列引导

音视频这块的知识点自己工作中有用到&#xff0c;一直没有好好做一个总结&#xff0c;原因有客观和主观的。 客观是工作太忙&#xff0c;没有成段时间做总结。 主观自己懒。 趁着这次主动离职拿了n1的钱&#xff0c;休息一下&#xff0c;对自己的人生做一下总结&#xff0c;…

为AI聊天工具添加一个知识系统 之80 详细设计之21 符号逻辑 之1

本文要点 要点 前面我们讨论了本项目中的正则表达式。现在我们将前面讨论的正则表达式视为狭义的符号文本及其符号规则rule&#xff08;认识的原则--认识上认识对象的约束&#xff09;&#xff0c;进而在更广泛的视角下将其视为符号逻辑及其符号原则principle&#xff08;知识…