C# OpenCV机器视觉:利用CNN实现快速模板匹配

在一个阳光灿烂的周末,阿强正瘫在沙发上,百无聊赖地换着电视频道。突然,一则新闻吸引了他的注意:某博物馆里一幅珍贵的古画离奇失踪,警方怀疑是被一伙狡猾的盗贼偷走了,现场只留下一些模糊不清的监控画面,根本无法确定盗贼的行踪。阿强看着电视里那一团乱麻的线索,眼睛突然一亮,心中涌起一股热血:“要是我能帮警方找到盗贼,那可就太酷了!说不定还能得到博物馆的巨额悬赏,从此走上人生巅峰呢!”

说干就干,阿强立马冲进他那堆满各种电子设备和书籍的 “秘密基地”。他一边翻箱倒柜,一边嘴里嘟囔着:“我就不信了,凭我这一身的科技本领,还找不到几个毛贼!” 就在这时,他的目光落在了一台布满灰尘的电脑上,脑海中突然闪过一个念头:“对了!我可以用 OpenCvSharp 结合 CNN 来进行模板匹配,从监控画面里找出盗贼的蛛丝马迹!”

第一章:神秘的 CNN—— 图像世界的 “超级侦探”
阿强深知,要想在这复杂的图像世界里找到盗贼的线索,CNN(卷积神经网络)可是他的秘密武器。但这个 CNN 到底是何方神圣呢?阿强决定给它编一个神秘的故事,好让自己更有干劲。

“传说中,CNN 是图像世界里的一位超级侦探,它有着一双无比锐利的眼睛,能看穿图像里隐藏的所有秘密。” 阿强一边对着空气比划,一边眉飞色舞地说道,“它的大脑里装满了各种神奇的算法,就像一个藏满了魔法道具的宝库。当它面对一张图像时,就会施展它的魔法,把图像里的各种特征都提取出来,然后和它记忆中的模板进行比对,不管是多么微小的细节,都逃不过它的法眼。”

阿强越说越兴奋,仿佛自己已经成为了 CNN 的主人,带着它在图像世界里大杀四方:“比如说,我们要找一个特定的图案,CNN 就会像一个不知疲倦的寻宝者,在图像的每一个角落仔细搜寻。它会用它的魔法卷积核,一层一层地扫描图像,就像在给图像做一次深度按摩,把那些隐藏在像素背后的秘密都挖掘出来。一旦发现和模板相似的地方,它就会像发现了宝藏一样,立刻发出信号。”

第二章:筹备 “抓贼” 行动 —— 装备与知识武装
阿强决定先从监控画面里提取一些可能和盗贼有关的模板,比如他们的身形、衣着特征等。他打开电脑,启动 OpenCvSharp,开始加载监控图像和制作模板。

“嘿,老伙计,今天就靠你帮我找出那些可恶的盗贼了!” 阿强拍了拍电脑,像是在给它打气。

他小心翼翼地从监控视频中截取了几帧画面,然后用图像处理软件把盗贼的大致轮廓勾勒出来,制作成模板。“这些模板就是我们的‘通缉令’,只要盗贼在图像里出现,就别想逃过我们的追捕!” 阿强看着屏幕上的模板,信心满满地说道。

接下来,就是要把这些模板和 OpenCvSharp 里的 CNN 算法结合起来,让它们发挥出最大的威力。阿强开始编写代码,虽然他心里也有点紧张,但一想到自己即将成为英雄,就充满了动力。

阿强一边编写代码,一边在心里默默念叨:“我先把图像和模板都加载进来,就像把案件的线索和嫌疑人的画像都收集好。然后把模板标准化,让它们都有相同的尺寸,这样 CNN 才能更好地比对。接着把模板合并成一个多通道的卷积核,这就像是给 CNN 一把超级武器,让它能同时搜索多个目标。再用这个卷积核对图像进行卷积操作,就像让 CNN 在图像里进行地毯式搜索。最后,设置一个相似度阈值,只要找到的匹配度超过这个阈值,就说明我们可能找到了盗贼的踪迹!”

class CNN模板匹配
{static void TEST(){// 加载图像和多个模板  Mat image = Cv2.ImRead(@"D:\软件\core\test\Image_20240622141940849.bmp", ImreadModes.Grayscale);Mat template1 = Cv2.ImRead(@"D:\软件\core\template\1274.png", ImreadModes.Grayscale);Mat template2 = Cv2.ImRead(@"D:\软件\core\template\1282.png", ImreadModes.Grayscale);// 标准化模板  Size templateSize = new Size(33, 33);Cv2.Resize(template1, template1, templateSize);Cv2.Resize(template2, template2, templateSize);// 合并模板为一个多通道卷积核  Mat filters = new Mat();Cv2.Merge(new Mat[] { template1, template2 }, filters); // 合并模板为多通道  // 创建输出图像  Mat outputImg = new Mat(image.Size(), MatType.CV_8UC3);Cv2.CvtColor(image, outputImg, ColorConversionCodes.BGR2RGB); // 转换为 RGB 格式以便于显示 // 执行卷积操作  Mat result = new Mat();Cv2.Filter2D(image, result, MatType.CV_32F, filters); // 使用多通道卷积核进行卷积  // 设置相似度阈值  double similarityThreshold = 0.8;// 计算每个模板的参考值  double[] referenceValues = new double[filters.Channels()];for (int i = 0; i < filters.Channels(); i++){referenceValues[i] = Cv2.Sum(filters.Split()[i])[0]; // 计算每个模板的参考值  }// 可视化所有匹配位置  for (int y = 0; y < result.Rows; y++){for (int x = 0; x < result.Cols; x++){// 获取匹配值  double outputValue = result.At<float>(y, x);// 计算相似度  for (int i = 0; i < referenceValues.Length; i++){double similarity = 1 - Math.Abs(outputValue - referenceValues[i]) / referenceValues[i];// 仅在相似度超过阈值时可视化匹配位置  if (similarity > similarityThreshold){int centerX = x; // 圆心的 x 坐标  int centerY = y; // 圆心的 y 坐标  Cv2.Circle(outputImg, new Point(centerX, centerY), 2, new Scalar(179, 240, 240), thickness: 1);Cv2.Rectangle(outputImg, new Rect(x, y, templateSize.Width, templateSize.Height), new Scalar(179, 240, 240), 1);}}}}// 显示结果  Cv2.ImShow("Match Result", outputImg);Cv2.WaitKey(0);Cv2.DestroyAllWindows();}
}

第三章:代码冲锋 —— 让 CNN “大显身手”
代码编写完成后,阿强深吸一口气,按下了运行键。电脑屏幕上的图像开始快速闪烁,CNN 就像一个不知疲倦的侦探,在图像的每一个角落仔细搜寻着。

“快了,快了,马上就能找到那些盗贼了!” 阿强紧张地盯着屏幕,眼睛都不敢眨一下。

突然,屏幕上出现了几个绿色的圆圈和矩形,标记出了图像中与模板相似度较高的位置。阿强兴奋地跳了起来:“找到了!终于找到了!我就知道 CNN 不会让我失望的!”

他仔细查看这些标记的位置,发现有几个地方的身形和衣着特征与盗贼的模板非常相似。阿强立刻把这些信息整理成报告,发送给了警方。

第四章:真相大白 —— 阿强的 “英雄时刻”
几天后,警方传来了好消息:他们根据阿强提供的线索,成功抓获了盗贼,找回了被盗的古画。博物馆为了感谢阿强,特意举办了一场盛大的颁奖典礼,阿强一下子成了当地的名人。

“阿强,你可真是我们的大英雄啊!” 博物馆馆长握着阿强的手,激动地说道。

阿强不好意思地挠挠头:“其实我也没做什么,主要是 OpenCvSharp 和 CNN 的功劳。”

从那以后,阿强更加痴迷于 OpenCvSharp 和 CNN 的研究。他知道,这只是他在图像世界里的一次小小冒险,未来还有更多的挑战和惊喜等待着他。而他,也将继续用科技的力量,去探索这个神秘而又充满魅力的图像世界。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/67060.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智能电动汽车系列 --- 智能汽车向车载软件转型

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身…

YOLOv8改进,YOLOv8检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等,全网独发

摘要 作者提出一种新的检测头,称为“动态头”,旨在将尺度感知、空间感知和任务感知统一在一起。如果我们将骨干网络的输出(即检测头的输入)视为一个三维张量,其维度为级别 空间 通道,这样的统一检测头可以看作是一个注意力学习问题,直观的解决方案是对该张量进行全自…

GitLab配置免密登录和常用命令

SSH 免密登录 Windows免密登录 删除现有Key 访问目录&#xff1a;C:\Users\Administrator\ .ssh&#xff0c;删除公钥&#xff1a;id_rsa.pub &#xff0c;私钥&#xff1a;id_rsa 2.生成.ssh 秘钥 运行命令生成.ssh 秘钥目录&#xff08; ssh-keygen -t rsa -C xxxxxx126.…

VUE的安装

要用vue必须要先安装nodejs nodejs的安装及环境配置 1.下载安装包 下载地址&#xff1a; https://nodejs.org/zh-cn/download/ 2.安装程序 下载完成后&#xff0c;双击安装包开始安装 ①点击next ②点同意、next ③默认路径是C:\Program Files\nodejs\&#xff0c;可修改…

chrome插件:网页图片高清下载

前置条件&#xff1a; 安装有chrome谷歌浏览器的电脑 使用步骤&#xff1a; 1.打开chrome扩展插件 2.点击管理扩展程序 3.加载已解压的扩展程序 4.选择对应文件夹 5.成功后会出现一个扩展小程序 6.点击对应小程序 7.输入需要访问的网址&#xff0c;点击扩展插件即可进行图片…

[操作系统] 进程地址空间管理

虚拟地址空间的初始化 缺页中断 缺页中断的概念 缺页中断&#xff08;Page Fault Interrupt&#xff09; 是指当程序访问的虚拟地址在页表中不存在有效映射&#xff08;即该页未加载到内存中&#xff09;时&#xff0c;CPU 会发出一个中断信号&#xff0c;请求操作系统加载所…

HTML5 Web Worker 的使用与实践

引言 在现代 Web 开发中&#xff0c;用户体验是至关重要的。如果页面在执行复杂计算或处理大量数据时变得卡顿或无响应&#xff0c;用户很可能会流失。HTML5 引入了 Web Worker&#xff0c;它允许我们在后台运行 JavaScript 代码&#xff0c;从而避免阻塞主线程&#xff0c;保…

适用于IntelliJ IDEA 2024.1.2部署Tomcat的完整方法,以及笔者踩的坑,避免高血压,保姆级教程

Tips:创建部署Tomcat直接跳转到四 一、软件准备 笔者用的是IntelliJ IDEA 2024.1.2和Tomcat 8.5。之前我使用的是Tomcat 10&#xff0c;但遇到了许多问题。其中一个主要问题是需要使用高于1.8版本的JDK&#xff0c;为此我下载了新的JDK版本&#xff0c;但这又引发了更多的兼容…

微信阅读网站小程序的设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…

汽车免拆诊断案例 | 2007 款日产天籁车起步加速时偶尔抖动

故障现象  一辆2007款日产天籁车&#xff0c;搭载VQ23发动机&#xff08;气缸编号如图1所示&#xff0c;点火顺序为1-2-3-4-5-6&#xff09;&#xff0c;累计行驶里程约为21万km。车主反映&#xff0c;该车起步加速时偶尔抖动&#xff0c;且行驶中加速无力。 图1 VQ23发动机…

对神经网络基础的理解

目录 一、《python神经网络编程》 二、一些粗浅的认识 1&#xff09; 神经网络也是一种拟合 2&#xff09;神经网络不是真的大脑 3&#xff09;网络构建需要反复迭代 三、数字图像识别的实现思路 1&#xff09;建立一个神经网络类 2&#xff09;权重更新的具体实现 3&am…

PAT甲级-1024 Palindromic Number

题目 题目大意 一个非回文数&#xff0c;加上它的翻转数所得的和&#xff0c;进行k次&#xff0c;有可能会得到一个回文数。给出一个数n&#xff0c;限制相加次数为k次&#xff0c;如果小于k次就得到回文数&#xff0c;那么输出该回文数和相加的次数&#xff1b;如果进行k次还…

appium自动化环境搭建

一、appium介绍 appium介绍 appium是一个开源工具、支持跨平台、用于自动化ios、安卓手机和windows桌面平台上面的原生、移动web和混合应用&#xff0c;支持多种编程语言(python&#xff0c;java&#xff0c;Ruby&#xff0c;Javascript、PHP等) 原生应用和混合应用&#xf…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.1 从零搭建NumPy环境:安装指南与初体验

1. 从零搭建NumPy环境&#xff1a;安装指南与初体验 NumPy核心能力图解&#xff08;架构图&#xff09; NumPy 是 Python 中用于科学计算的核心库&#xff0c;它提供了高效的多维数组对象以及用于处理这些数组的各种操作。NumPy 的核心能力可以概括为以下几个方面&#xff1a…

【SpringBoot教程】Spring Boot + MySQL + HikariCP 连接池整合教程

&#x1f64b;大家好&#xff01;我是毛毛张! &#x1f308;个人首页&#xff1a; 神马都会亿点点的毛毛张 在前面一篇文章中毛毛张介绍了SpringBoot中数据源与数据库连接池相关概念&#xff0c;今天毛毛张要分享的是关于SpringBoot整合HicariCP连接池相关知识点以及底层源码…

Java进阶(一)

目录 一.Java注解 什么是注解&#xff1f; 内置注解 元注解 二.对象克隆 什么是对象克隆? 为什么用到对象克隆 三.浅克隆深克隆 一.Java注解 什么是注解&#xff1f; java中注解(Annotation)又称java标注&#xff0c;是一种特殊的注释。 可以添加在包&#xff0c;类&…

即梦(Dreamina)技术浅析(二):后端AI服务

1. 文本处理(Text Processing) 1.1 功能概述 文本处理模块的主要任务是将用户输入的文字提示词转换为机器可以理解的向量表示。这一过程包括分词、词嵌入和语义编码,旨在捕捉文本的语义信息,为后续的图像和视频生成提供准确的指导。 1.2 关键技术 1.分词(Tokenization…

蓝桥杯之c++入门(一)【第一个c++程序】

目录 前言一、第⼀个C程序1.1 基础程序1.2 main函数1.3 字符串1.4 头文件1.5 cin 和 cout 初识1.6 名字空间1.7 注释 二、四道简单习题&#xff08;点击跳转链接&#xff09;练习1&#xff1a;Hello,World!练习2&#xff1a;打印飞机练习3&#xff1a;第⼆个整数练习4&#xff…

【C++初阶】第11课—vector

文章目录 1. 认识vector2. vector的遍历3. vector的构造4. vector常用的接口5. vector的容量6. vector的元素访问7. vector的修改8. vector<vector\<int\>>的使用9. vector的使用10. 模拟实现vector11. 迭代器失效11.1 insert插入数据内部迭代器失效11.2 insert插入…

【AIGC学习笔记】扣子平台——精选有趣应用,探索无限可能

背景介绍&#xff1a; 由于近期业务发展的需求&#xff0c;我开始接触并深入了解了扣子平台的相关知识&#xff0c;并且通过官方教程自学了简易PE工作流搭建的技巧。恰逢周会需要准备与工作相关的分享主题&#xff0c;而我作为一个扣子平台的初学者&#xff0c;也想探索一下这…