python学opencv|读取图像(三十九 )阈值处理Otsu方法

【1】引言

前序学习了5种阈值处理方法,包括(反)阈值处理、(反)零值处理和截断处理,还学习了一种自适应处理方法,相关文章链接为:

python学opencv|读取图像(三十三)阈值处理-灰度图像-CSDN博客

python学opencv|读取图像(三十四)阈值处理-彩色图像-CSDN博客

python学opencv|读取图像(三十五)反阈值处理-CSDN博客

python学opencv|读取图像(三十六)(反)零值处理-CSDN博客

python学opencv|读取图像(三十七 )截断处理-CSDN博客

python学opencv|读取图像(三十八 )阈值自适应处理-CSDN博客

在上述所有文章中,阈值开关都是自己随机设置的,因此,实际效果可能未必是最佳。

如果有一种方法,可以让函数自动选取最佳阈值开关,那就能时刻获得最佳的阈值处理效果,这个方法就是:“阈值处理参数+Otsu”。

【2】官网教程

Otsu方法的说明,点击下方链接可以直达:

OpenCV: Miscellaneous Image Transformations

官网页面关于Otsu方法的说明为:

图1

实际上,使用Otsu方法时,必须配合前述5种阈值处理方法一起进行阈值调整。因为Otsu方法本身是来辅助选择最优的阈值开关,所以阈值处理方法还需要保留。

在下述官网示例说明中,我们会看到这一解释:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcf.png',0) #读取图像
dst=src#输出图像# 读取图片-函数转化灰度图
src1 = cv.imread('srcf.png') #读取图像
dst1=cv.cvtColor(src1,cv.COLOR_BGR2GRAY) #转化为灰度图dstt=np.hstack((dst,dst1)) #两种灰度图拼接在一起

OpenCV: Image Thresholding

图2

【3】代码测试

首先引入必要的模块和原图像:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcf.png',0) #读取图像
dst=src#输出图像# 读取图片-函数转化灰度图
src1 = cv.imread('srcf.png') #读取图像
dst1=cv.cvtColor(src1,cv.COLOR_BGR2GRAY) #转化为灰度图dstt=np.hstack((dst,dst1)) #两种灰度图拼接在一起

然后进行Otsu处理,为进行对比,也做了零值处理:

#阈值处理
t2,dst2=cv.threshold(src,58,158,cv.THRESH_TOZERO) #零值-阈值开关58,阈值上限158
t3,dst3=cv.threshold(src,0,255,cv.THRESH_TOZERO+cv.THRESH_OTSU) #零值+OTSU
dsto=np.hstack((dst2,dst3)) #两种阈值处理图拼接在一起

之后显示图像和保存图像:

# 在屏幕展示效果
cv.imshow('srcdstt', dstt)  # 在屏幕展示效果
cv.imshow('srcdsto', dsto)  # 在屏幕展示效果#显示BGR值
print("dst1像素数为[100,100]位置处的BGR=", dst1[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[100,100]位置处的BGR=", dst2[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst3像素数为[100,100]位置处的BGR=", dst3[100, 100])  # 获取像素数为[100,100]位置处的BGR#保存图像
cv.imwrite('srcf-dstt.png', dstt)  # 保存图像
cv.imwrite('srcf-dst2.png', dst3)  # 保存图像
cv.imwrite('srcf-dsto.png', dsto)  # 保存图像cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

此处使用的原始图像为:

图3

转化后的灰度图为:

图4 灰度图

进行单纯零值处理和零值处理+OTSU处理后的图像为:

图5 单纯零值处理和零值处理+OTSU处理

由图5可见,右侧为零值处理+OTSU处理后的图像,更趋向于突出轮廓边线。

由于OTSU处理图像会自动选择最佳阈值开关,所以我们输出了特定位置的BGR值:

图6 特定像素点BGR值

dst1为转后的原始灰度图,dst2为单纯零值处理图,dst3为零值处理+OTSU处理后的图像。

由图6可见,零值处理+OTSU处理后的图像,自动选择的阈值开关也没有超过156,所以这两个图在像素点[100][100]处的BGR值完全相等。

【4】细节说明

使用Otsu方法的时候,依然调用cv2.threshold()函数,虽然此时Otsu会自动选择阈值开关,但仍然需要在阈值开关的位置写"0"。

图7 提前设定阈值开关为0

【5】总结

掌握了python+opencv实现Otsu自动调整阈值开关的操作技巧。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/66565.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式硬件篇---PID控制

文章目录 前言第一部分:连续PID1.比例(Proportional,P)控制2.积分(Integral,I)控制3.微分(Derivative,D)控制4.PID的工作原理5..实质6.分析7.各种PID控制器P控…

日志收集Day001

1.ElasticSearch 作用:日志存储和检索 2.单点部署Elasticsearch与基础配置 rpm -ivh elasticsearch-7.17.5-x86_64.rpm 查看配置文件yy /etc/elasticsearch/elasticsearch.yml(这里yy做了别名,过滤掉空行和注释行) yy /etc/el…

《offer 来了:Java 面试核心知识点精讲 -- 框架篇》(附资源)

继上篇文章介绍了《offer 来了:Java 面试核心知识点精讲 -- 原理篇》书后,本文章再给大家推荐兄弟篇 《offer来了:Java面试核心知识点精讲--框架篇》, 简直就是为Java开发者量身定制的面试神器。 本书是对Java程序员面试中常见的…

Low-Level 大一统:如何使用Diffusion Models完成视频超分、去雨、去雾、降噪等所有Low-Level 任务?

Diffusion Models专栏文章汇总:入门与实战 前言:视频在传输过程中常常因为各种因素(如恶劣天气、噪声、压缩和传感器分辨率限制)而出现质量下降,这会严重影响计算机视觉任务(如目标检测和视频监控)的性能。现有的视频修复方法虽然取得了一些进展,但通常只能针对特定的退…

Video-RAG:一种将视频RAG新框架

1. 摘要及主要贡献点 摘要: 检索增强生成(RAG)是一种强大的策略,通过检索与查询相关的外部知识并将其整合到生成过程中,以解决基础模型生成事实性错误输出的问题。然而,现有的RAG方法主要集中于文本信息&…

Docker Load后存储的镜像及更改镜像存储目录的方法

Docker Load后存储的镜像及更改镜像存储目录的方法 Docker Load后存储的镜像更改镜像存储目录的方法脚本说明注意事项Docker作为一种开源的应用容器引擎,已经广泛应用于软件开发、测试和生产环境中。通过Docker,开发者可以将应用打包成镜像,轻松地进行分发和运行。而在某些场…

Amazon MSK 开启 Public 访问 SASL 配置的方法

1. 开启 MSK Public 1.1 配置 MSK 参数 进入 MSK 控制台页面,点击左侧菜单 Cluster configuration。选择已有配置,或者创建新配置。在配置中添加参数 allow.everyone.if.no.acl.foundfalse修改集群配置,选择到新添加的配置。 1.2 开启 Pu…

Windows FileZila Server共享电脑文件夹 映射21端口外网连接

我有这样一个使用场景,在外部网络环境下,通过手机便捷地读取存储在电脑上的视频文件。比如在外出旅行、出差,身边没有携带电脑,仅依靠手机设备,就能随时获取电脑里存储的各类视频,无论是学习资料视频、工作…

MySQL 实战 4 种将数据同步到ES方案

文章目录 1. 前言2. 数据同步方案 2.1 同步双写2.2 异步双写2.3 定时更新2.4 基于 Binlog 实时同步 3. 数据迁移工具选型 3.1 Canal3.2 阿里云 DTS3.3 Databus3.4 Databus和Canal对比3.4 其它 4. 后记 上周听到公司新同事分享 MySQL 同步数据到 ES 的方案,发现很有…

虚幻基础-1:cpu挑选(14600kf)

能帮到你的话,就给个赞吧 😘 文章目录 ue非常吃cpu拉满主频打开项目编写蓝图运行原因 时间长 关于压力测试 本文以14600kf为例,双12购入,7月份产。 ue非常吃cpu 经本人测试,ue是非常吃cpu的。 拉满主频 无论任何时间…

QTableWidget的简单使用

1.最简单的表格示例&#xff1a; ui->tableWidget->setRowCount(2);// 设置行数ui->tableWidget->setColumnCount(3);// 设置列数&#xff0c;一定要放在设置行表头之前QStringList rowHeaderList;// 行表头rowHeaderList << QStringLiteral("姓名"…

深入探究分布式日志系统 Graylog:架构、部署与优化

文章目录 一、Graylog简介二、Graylog原理架构三、日志系统对比四、Graylog部署传统部署MongoDB部署OS或者ES部署Garylog部署容器化部署 五、配置详情六、优化网络和 REST APIMongoDB 七、升级八、监控九、常见问题及处理 一、Graylog简介 Graylog是一个简单易用、功能较全面的…

2024年我的技术成长之路

2024年我的技术成长之路 大家好&#xff0c;我是小寒。又到年底了&#xff0c;一年过得真快啊&#xff01;趁着这次活动的机会&#xff0c;和大家聊聊我这一年在技术上的收获和踩过的坑。 说实话&#xff0c;今年工作特别忙&#xff0c;写博客的时间比去年少了不少。不过还是…

嵌入式硬件篇---基本组合逻辑电路

文章目录 前言基本逻辑门电路1.与门&#xff08;AND Gate&#xff09;2.或门&#xff08;OR Gate&#xff09;3.非门&#xff08;NOT Gate&#xff09;4.与非门&#xff08;NAND Gate&#xff09;5.或非门&#xff08;NOR Gate&#xff09;6.异或门&#xff08;XOR Gate&#x…

数据库管理-第285期 Oracle 23ai:深入浅出向量索引(20250117)

数据库管理285期 20245-01-17 数据库管理-第285期 Oracle 23ai&#xff1a;深入浅出向量索引&#xff08;20250117&#xff09;1 HNSW事务支持解读 2 IVF分区支持解读 3 混合向量索引何时选择混合向量索引为何选择混合向量索引 总结 数据库管理-第285期 Oracle 23ai&#xff1a…

行人识别检测数据集,yolo格式,PASICAL VOC XML,COCO JSON,darknet等格式的标注都支持,准确识别率可达99.5%

作者简介&#xff1a; 高科&#xff0c;先后在 IBM PlatformComputing从事网格计算&#xff0c;淘米网&#xff0c;网易从事游戏服务器开发&#xff0c;拥有丰富的C&#xff0c;go等语言开发经验&#xff0c;mysql&#xff0c;mongo&#xff0c;redis等数据库&#xff0c;设计模…

【Spring】原型 Bean 被固定

问题描述 在定义 Bean 时&#xff0c;有时候我们会使用原型 Bean&#xff0c;例如定义如下&#xff1a; Service Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE) public class ServiceImpl { }然后我们按照下面的方式去使用它&#xff1a; RestController public class Hello…

2024年美赛C题评委文章及O奖论文解读 | AI工具如何影响数学建模?从评委和O奖论文出发-O奖论文做对了什么?

模型假设仅仅是简单陈述吗&#xff1f;允许AI的使用是否降低了比赛难度&#xff1f;还在依赖机器学习的模型吗&#xff1f;处理题目的方法有哪些&#xff1f;O奖论文的优点在哪里&#xff1f; 本文调研了当年赛题的评委文章和O奖论文&#xff0c;这些问题都会在文章中一一解答…

PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统

基于YOLOv8深度学习的学生课堂行为检测识别系统&#xff0c;其能识别三种学生课堂行为&#xff1a;names: [举手, 读书, 写字] 具体图片见如下&#xff1a; 第一步&#xff1a;YOLOv8介绍 YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本…

kafka学习笔记6 ACL权限 —— 筑梦之路

在Kafka中&#xff0c;ACL&#xff08;Access Control List&#xff09;是用来控制谁可以访问Kafka资源&#xff08;如主题、消费者组等&#xff09;的权限机制。ACL配置基于Kafka的kafka-acls.sh工具&#xff0c;能够管理对资源的读取、写入等操作权限。 ACL介绍 Kafka的ACL是…