深度学习项目--基于LSTM的火灾预测研究(pytorch实现)

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

前言

  • LSTM模型一直是一个很经典的模型,这个模型当然也很复杂,一般需要先学习RNN、GRU模型之后再学,GRU、LSTM的模型讲解将在这两天发布更新,其中:
    • 深度学习基础–一文搞懂RNN
    • 深度学习基础–GRU学习笔记(李沐《动手学习深度学习》)
  • 这一篇:是基于LSTM模型火灾预测研究,讲述了如何构建时间数据、模型如何构建、pytorch中LSTM的API、动态调整学习率等=,最后用RMSE、R2做评估
  • 欢迎收藏 + 关注,本人将会持续更新

文章目录

    • 1、导入数据与数据展示
      • 1、导入库
      • 2、导入数据
      • 3、数据可视化
      • 4、相关性分析(热力图展示)
      • 5、特征提取
    • 2、时间数据构建
      • 1、数据标准化
      • 2、构建时间数据集
      • 3、划分数据集和加载数据集
      • 1、数据划分
    • 3、模型构建
    • 4、模型训练
      • 1、训练集函数
      • 2、测试集函数
      • 3、模型训练
    • 5、结果展示
      • 1、损失函数
      • 2、预测展示
      • 3、R2评估

1、导入数据与数据展示

1、导入库

import torch  
import torch.nn as nn 
import pandas as pd 
import numpy as np 
import seaborn as sns 
import matplotlib.pylab as plt # 设置分辨率
plt.rcParams['savefig.dpi'] = 500  # 图片分辨率
plt.rcParams['figure.dpi'] = 500 # 分辨率device = "cpu"device
'cpu'

2、导入数据

data_df = pd.read_csv('./woodpine2.csv')data_df.head()
TimeTem1CO 1Soot 1
00.00025.00.00.0
10.22825.00.00.0
20.45625.00.00.0
30.68525.00.00.0
40.91325.00.00.0

数据位实验数据,数据是定时收集的:

  • Time: 时间从 0.000 开始,每隔大约 0.228 的间隔递增。
  • Tem1: 是温度(Temperature)的缩写,单位可能是摄氏度 (°C)。
  • CO: 是指一氧化碳 (Carbon Monoxide) 的浓度。
  • Soot: 是指烟炱或炭黑 (Soot) 的浓度。
# 数据信息查询
data_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5948 entries, 0 to 5947
Data columns (total 4 columns):#   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  0   Time    5948 non-null   float641   Tem1    5948 non-null   float642   CO 1    5948 non-null   float643   Soot 1  5948 non-null   float64
dtypes: float64(4)
memory usage: 186.0 KB
# 数据缺失值
data_df.isnull().sum()
Time      0
Tem1      0
CO 1      0
Soot 1    0
dtype: int64

3、数据可视化

时间是每隔固定时间收集的,故有用特征为:温度、CO、Soot

_, ax = plt.subplots(1, 3, constrained_layout=True, figsize=(14, 3)) # constrained_layout=True  自动调整子图sns.lineplot(data=data_df['Tem1'], ax=ax[0])
sns.lineplot(data=data_df['CO 1'], ax=ax[1])
sns.lineplot(data=data_df['Soot 1'], ax=ax[2])
plt.show()


在这里插入图片描述

4、相关性分析(热力图展示)

columns = ['Tem1', 'CO 1', 'Soot 1']plt.figure(figsize=(8, 6))
sns.heatmap(data=data_df[columns].corr(), annot=True, fmt=".2f")
plt.show()


在这里插入图片描述

# 统计分析
data_df.describe()
TimeTem1CO 1Soot 1
count5948.0000005948.0000005948.0000005948.000000
mean226.133238152.5349190.0000350.000222
std96.60144577.0260190.0000220.000144
min0.00000025.0000000.0000000.000000
25%151.00000089.0000000.0000150.000093
50%241.000000145.0000000.0000340.000220
75%310.000000220.0000000.0000540.000348
max367.000000307.0000000.0000800.000512

当我看到相关性为1的时候,我也惊呆了,后面查看了统计量,还是没发现出来,但是看上面的可视化图展示,我信了,随着温度升高,CO化碳、Soot浓度一起升高,这个也符合火灾的场景,数据没啥问题

5、特征提取

# 由于时间间隔一样,故这里去除
data = data_df.iloc[:, 1:]data.head(3)
Tem1CO 1Soot 1
025.00.00.0
125.00.00.0
225.00.00.0
data.tail(3)
Tem1CO 1Soot 1
5945292.00.0000770.000491
5946291.00.0000760.000489
5947290.00.0000760.000487

特征间数据差距较大,故需要做标准化

2、时间数据构建

1、数据标准化

from sklearn.preprocessing import MinMaxScalersc = MinMaxScaler()for col in ['Tem1', 'CO 1', 'Soot 1']:data[col] = sc.fit_transform(data[col].values.reshape(-1, 1))# 查看维度
data.shape
(5948, 3)

2、构建时间数据集

LSTM 模型期望输入数据的形状是 (样本数, 时间步长, 特征数),本文数据:

  • 样本数:5948
  • 时间步长:本文设置为8
    • 即是:取特征每8行(Tem1, CO 1, Soot 1)为一个时间段,第9个时间段的Tem1为y(温度),火灾预测本质也是预测温度
  • 特征数:3
width_x = 8
width_y = 1# 构建时间数据X, y(解释在上)
X, y = [], []# 设置开始构建数据位置
start_position = 0for _, _ in data.iterrows():in_end = start_position + width_xout_end = in_end + width_y if out_end < len(data):# 采集时间数据集X_ = np.array(data.iloc[start_position : in_end, :])y_ = np.array(data.iloc[in_end : out_end, 0])X.append(X_)y.append(y_)start_position += 1# 转化为数组
X = np.array(X)
# y也要构建出适合维度的变量
y = np.array(y).reshape(-1, 1, 1)X.shape, y.shape
((5939, 8, 3), (5939, 1, 1))

3、划分数据集和加载数据集

1、数据划分

# 取前5000个数据位训练集,后面为测试集
X_train = torch.tensor(np.array(X[:5000, ]), dtype=torch.float32)
X_test = torch.tensor(np.array(X[5000:, ]), dtype=torch.float32)y_train = torch.tensor(np.array(y[:5000, ]), dtype=torch.float32)
y_test = torch.tensor(np.array(y[5000:, ]), dtype=torch.float32)X_train.shape, y_train.shape 
(torch.Size([5000, 8, 3]), torch.Size([5000, 1, 1]))

数据集构建:

  • TensorDataset 是 PyTorch 中的一个类,用于将两个或多个张量组合成一个数据集。每个样本由一个输入张量和一个目标张量组成(构建的数据集中,每一个输入对应一个输出)
from torch.utils.data import TensorDataset, DataLoaderbatch_size = 64train_dl = DataLoader(TensorDataset(X_train, y_train),batch_size=batch_size,shuffle=True)test_dl = DataLoader(TensorDataset(X_test, y_test),batch_size=batch_size,shuffle=False)

3、模型构建

nn.LSTM 的 API

*构造函数

torch.nn.LSTM(input_size, hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0, bidirectional=False, proj_size=0)
  • input_size (int):每个时间步输入特征的数量。
  • hidden_size (int):LSTM 层中隐藏状态(h)的特征数。这也是 LSTM 输出的特征数量,除非指定了 proj_size
  • num_layers (int, 可选):LSTM 层的数量。默认值为 1。
  • bias (bool, 可选):如果为 True,则使用偏置项;否则不使用。默认值为 True
  • batch_first (bool, 可选):如果为 True,则输入和输出张量的形状为 (batch, seq, feature);否则为 (seq, batch, feature)。默认值为 False
  • dropout (float, 可选):除了最后一层之外的所有 LSTM 层之后应用的 dropout 概率。如果 num_layers = 1,则不会应用 dropout。默认值为 0。
  • bidirectional (bool, 可选):如果为 True,则变为双向 LSTM。默认值为 False
  • proj_size (int, 可选):如果大于 0,则 LSTM 会将隐藏状态投影到一个不同维度的空间。这减少了模型参数的数量,并且可以加速训练。默认值为 0,表示没有投影。

输入

  • input (tensor):形状为 (seq_len, batch, input_size) 或者如果 batch_first=True 则为 (batch, seq_len, input_size)
  • (h_0, c_0) (tuple, 可选):包含两个张量 (h_0, c_0),分别代表初始的隐藏状态和细胞状态。它们的形状均为 (num_layers * num_directions, batch, hidden_size)。如果没有提供,那么所有状态都会被初始化为零。

其中

  • 单向 LSTM (bidirectional=False):此时 num_directions=1。LSTM 只按照时间序列的顺序从前向后处理数据,即从第一个时间步到最后一个时间步。
  • 双向 LSTM (bidirectional=True):此时 num_directions=2。双向 LSTM 包含两个独立的 LSTM 层,一个按正常的时间顺序从前向后处理数据,另一个则反过来从后向前处理数据。这样做可以让模型同时捕捉到过去和未来的信息,对于某些任务(如自然语言处理中的语义理解)特别有用。

输出(两个)

  • output (tensor):包含了最后一个时间步的输出特征(h_t)。如果 batch_first=True,则形状为 (batch, seq_len, num_directions * hidden_size);否则为 (seq_len, batch, num_directions * hidden_size)。注意,如果 proj_size > 0,则输出的最后一个维度将是 num_directions * proj_size
  • (h_n, c_n) (tuple):包含两个张量 (h_n, c_n),分别代表所有时间步后的最终隐藏状态和细胞状态。它们的形状均为 (num_layers * num_directions, batch, hidden_size)。同样地,如果 proj_size > 0,则 h_n 的最后一个维度将是 proj_size
'''
模型采用两个lstm层:3->320:lstm->320:lstm(进一步提取时间特征)->1:linear
'''class model_lstm(nn.Module):def __init__(self):super().__init__()self.lstm1 = nn.LSTM(input_size=3, hidden_size=320, num_layers=1, batch_first=True)self.lstm2 = nn.LSTM(input_size=320, hidden_size=320, num_layers=1, batch_first=True)self.fc = nn.Linear(320, 1)def forward(self, x):out, hidden = self.lstm1(x)out, _ = self.lstm2(out)out = self.fc(out)   # 这个时候,输出维度(batch_size, sequence_length, output_size), 这里是(64, 8, 1)return out[:, -1, :].view(-1, 1, 1)  # 取最后一条数据  (64, 1, 1), 在pytorch中如果一个维度是1,可能会自动压缩,所以这里需要再次形状重塑model = model_lstm().to(device)
model
model_lstm((lstm1): LSTM(3, 320, batch_first=True)(lstm2): LSTM(320, 320, batch_first=True)(fc): Linear(in_features=320, out_features=1, bias=True)
)
# 先做测试
model(torch.rand(30, 8, 3)).shape
torch.Size([30, 1, 1])

4、模型训练

1、训练集函数

def train(train_dl, model, loss_fn, optimizer, lr_scheduler=None):size = len(train_dl.dataset)num_batchs = len(train_dl)train_loss = 0for X, y in train_dl:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)optimizer.zero_grad()loss.backward()optimizer.step()train_loss += loss.item()if lr_scheduler is not None:lr_scheduler.step()print("learning rate = {:.5f}".format(optimizer.param_groups[0]['lr']), end="  ")train_loss /= num_batchsreturn train_loss

2、测试集函数

def test(test_dl, model, loss_fn):size = len(test_dl.dataset)num_batchs = len(test_dl)test_loss = 0with torch.no_grad():for X, y in test_dl:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_loss += loss.item()test_loss /= num_batchsreturn test_loss

3、模型训练

# 设置超参数
loss_fn = nn.MSELoss()
lr = 1e-1
opt = torch.optim.SGD(model.parameters(), lr=lr, weight_decay=1e-4) # weight_decay 实际上是在应用 L2 正则化(也称为权重衰减)epochs = 50# 动态调整学习率
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, epochs, last_epoch=-1)train_loss = []
test_loss = []for epoch in range(epochs):model.train()epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)model.eval()epoch_test_loss = test(test_dl, model, loss_fn)train_loss.append(epoch_train_loss)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_loss:{:.5f}, Test_loss:{:.5f}')     print(template.format(epoch+1, epoch_train_loss,  epoch_test_loss))
learning rate = 0.09990  Epoch: 1, Train_loss:0.00320, Test_loss:0.00285
learning rate = 0.09961  Epoch: 2, Train_loss:0.00022, Test_loss:0.00084
learning rate = 0.09911  Epoch: 3, Train_loss:0.00015, Test_loss:0.00058
learning rate = 0.09843  Epoch: 4, Train_loss:0.00015, Test_loss:0.00057
learning rate = 0.09755  Epoch: 5, Train_loss:0.00015, Test_loss:0.00072
learning rate = 0.09649  Epoch: 6, Train_loss:0.00015, Test_loss:0.00059
learning rate = 0.09524  Epoch: 7, Train_loss:0.00015, Test_loss:0.00058
learning rate = 0.09382  Epoch: 8, Train_loss:0.00015, Test_loss:0.00058
learning rate = 0.09222  Epoch: 9, Train_loss:0.00015, Test_loss:0.00057
learning rate = 0.09045  Epoch:10, Train_loss:0.00015, Test_loss:0.00066
learning rate = 0.08853  Epoch:11, Train_loss:0.00015, Test_loss:0.00077
learning rate = 0.08645  Epoch:12, Train_loss:0.00015, Test_loss:0.00071
learning rate = 0.08423  Epoch:13, Train_loss:0.00015, Test_loss:0.00071
learning rate = 0.08187  Epoch:14, Train_loss:0.00015, Test_loss:0.00061
learning rate = 0.07939  Epoch:15, Train_loss:0.00015, Test_loss:0.00056
learning rate = 0.07679  Epoch:16, Train_loss:0.00015, Test_loss:0.00065
learning rate = 0.07409  Epoch:17, Train_loss:0.00015, Test_loss:0.00056
learning rate = 0.07129  Epoch:18, Train_loss:0.00015, Test_loss:0.00058
learning rate = 0.06841  Epoch:19, Train_loss:0.00015, Test_loss:0.00062
learning rate = 0.06545  Epoch:20, Train_loss:0.00015, Test_loss:0.00062
learning rate = 0.06243  Epoch:21, Train_loss:0.00015, Test_loss:0.00069
learning rate = 0.05937  Epoch:22, Train_loss:0.00015, Test_loss:0.00057
learning rate = 0.05627  Epoch:23, Train_loss:0.00015, Test_loss:0.00064
learning rate = 0.05314  Epoch:24, Train_loss:0.00015, Test_loss:0.00072
learning rate = 0.05000  Epoch:25, Train_loss:0.00015, Test_loss:0.00061
learning rate = 0.04686  Epoch:26, Train_loss:0.00015, Test_loss:0.00058
learning rate = 0.04373  Epoch:27, Train_loss:0.00015, Test_loss:0.00063
learning rate = 0.04063  Epoch:28, Train_loss:0.00015, Test_loss:0.00059
learning rate = 0.03757  Epoch:29, Train_loss:0.00015, Test_loss:0.00063
learning rate = 0.03455  Epoch:30, Train_loss:0.00015, Test_loss:0.00060
learning rate = 0.03159  Epoch:31, Train_loss:0.00015, Test_loss:0.00067
learning rate = 0.02871  Epoch:32, Train_loss:0.00015, Test_loss:0.00065
learning rate = 0.02591  Epoch:33, Train_loss:0.00015, Test_loss:0.00063
learning rate = 0.02321  Epoch:34, Train_loss:0.00015, Test_loss:0.00063
learning rate = 0.02061  Epoch:35, Train_loss:0.00015, Test_loss:0.00067
learning rate = 0.01813  Epoch:36, Train_loss:0.00015, Test_loss:0.00062
learning rate = 0.01577  Epoch:37, Train_loss:0.00015, Test_loss:0.00065
learning rate = 0.01355  Epoch:38, Train_loss:0.00015, Test_loss:0.00064
learning rate = 0.01147  Epoch:39, Train_loss:0.00014, Test_loss:0.00063
learning rate = 0.00955  Epoch:40, Train_loss:0.00015, Test_loss:0.00063
learning rate = 0.00778  Epoch:41, Train_loss:0.00015, Test_loss:0.00060
learning rate = 0.00618  Epoch:42, Train_loss:0.00014, Test_loss:0.00063
learning rate = 0.00476  Epoch:43, Train_loss:0.00015, Test_loss:0.00063
learning rate = 0.00351  Epoch:44, Train_loss:0.00015, Test_loss:0.00063
learning rate = 0.00245  Epoch:45, Train_loss:0.00015, Test_loss:0.00062
learning rate = 0.00157  Epoch:46, Train_loss:0.00015, Test_loss:0.00062
learning rate = 0.00089  Epoch:47, Train_loss:0.00015, Test_loss:0.00063
learning rate = 0.00039  Epoch:48, Train_loss:0.00015, Test_loss:0.00063
learning rate = 0.00010  Epoch:49, Train_loss:0.00015, Test_loss:0.00063
learning rate = 0.00000  Epoch:50, Train_loss:0.00015, Test_loss:0.00063

5、结果展示

1、损失函数

import matplotlib.pyplot as plt 
from datetime import datetime 
current_time = datetime.now() # 获取当前时间 plt.figure(figsize=(5, 3),dpi=120)   
plt.plot(train_loss    , label='LSTM Training Loss') 
plt.plot(test_loss, label='LSTM Validation Loss')   
plt.title('Training and Validation Loss') 
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效 
plt.legend() 
plt.show()


在这里插入图片描述

效果不错,收敛了

2、预测展示

predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))                    # 测试集输入模型进行预测 
y_test_1         = sc.inverse_transform(y_test.reshape(-1,1)) 
y_test_one       = [i[0] for i in y_test_1] 
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]   
plt.figure(figsize=(5, 3),dpi=120) # 画出真实数据和预测数据的对比曲线 
plt.plot(y_test_one[:2000], color='red', label='real_temp') 
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')   
plt.title('Title') 
plt.xlabel('X') 
plt.ylabel('Y') 
plt.legend() 
plt.show()


在这里插入图片描述

3、R2评估

from sklearn import metrics 
""" 
RMSE :均方根误差  ----->  对均方误差开方 
R2   :决定系数,可以简单理解为反映模型拟合优度的重要的统计量 
""" 
RMSE_lstm  = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5 
R2_lstm    = metrics.r2_score(predicted_y_lstm_one, y_test_1)   
print('均方根误差: %.5f' % RMSE_lstm) 
print('R2: %.5f' % R2_lstm)
均方根误差: 0.00001
R2: 0.82422

rmse、r2都不错,但是拟合度还可以再提高

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/66410.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于 WEB 开发的汽车养护系统设计与实现

标题:基于 WEB 开发的汽车养护系统设计与实现 内容:1.摘要 本文介绍了基于 WEB 开发的汽车养护系统的设计与实现。文章首先阐述了系统的背景和目的&#xff0c;即随着汽车保有量的增加&#xff0c;汽车养护需求日益增长&#xff0c;传统的汽车养护方式已经无法满足人们的需求&…

GitLab集成Jira

GitLab与Jira集成的两种方式 GitLab 提供了两种 Jira 集成&#xff0c;即Jira议题集成和Jira开发面板集成&#xff0c;可以配置一个或者两个都配置。 具体集成步骤可以参考官方文档Jira 议题集成&#xff08;极狐GitLab文档&#xff09;和Jira 开发面板集成&#xff08;极狐G…

【爬虫】某某查cookie逆向

代码仅供技术人员进行学习和研究使用&#xff0c;请勿将其用于非法用途或以任何方式窃取第三方数据。使用该代码产生的所有风险均由用户自行承担&#xff0c;作者不对用户因使用该代码而造成的任何损失或损害承担任何责任。 加密参数 加密参数主要是cookie&#xff0c;其中只有…

A5.Springboot-LLama3.2服务自动化构建(二)——Jenkins流水线构建配置初始化设置

下面我们接着上一篇文章《A4.Springboot-LLama3.2服务自动化构建(一)——构建docker镜像配置》继续往下分析,在自动化流水线构建过程当中的相关初始化设置和脚本编写。 一、首先需要先安装Jenkins 主部分请参考我前面写的一篇文章《Jenkins持续集成与交付安装配置》 二、…

如何设置HTTPS站点防御?

设置HTTPS站点防御涉及到多个层面的安全措施&#xff0c;包括但不限于配置Web服务器、应用安全头信息、使用内容安全策略&#xff08;CSP&#xff09;、启用HSTS和OCSP Stapling等。下面是一些关键的步骤来增强HTTPS网站的安全性&#xff1a; 1. 使用强加密协议和密钥交换算法…

[Java]类和对象

1. 什么是类&#xff1f; 类&#xff08;Class&#xff09;是蓝图或者模板。它定义了对象的属性和行为。 类就是一种抽象的模板&#xff0c;你可以通过它创建多个对象。类定义了对象的属性&#xff08;变量&#xff09;和行为&#xff08;方法&#xff09;。我们可以把类理解…

win32汇编环境,窗口程序中基础列表框的应用举例

;运行效果 ;win32汇编环境,窗口程序中基础列表框的应用举例 ;比如在窗口程序中生成列表框&#xff0c;增加子项&#xff0c;删除某项&#xff0c;取得指定项内容等 ;直接抄进RadAsm可编译运行。重点部分加备注。 ;以下是ASM文件 ;>>>>>>>>>>>…

【机器学习实战入门】使用LSTM机器学习预测股票价格

机器学习在股票价格预测中有重要的应用。在这个机器学习项目中&#xff0c;我们将讨论如何预测股票的收益。这是一个非常复杂的任务&#xff0c;充满了不确定性。我们将会把这个项目分成两部分进行开发&#xff1a; 首先&#xff0c;我们将学习如何使用 LSTM 神经网络预测股票…

【编程语言】C/C++语言常见标准和规范

C/C 是两种功能强大且广泛使用的编程语言。尽管它们没有像 Java 那样强制性的命名规则&#xff0c;但为了提高代码的可读性和可维护性&#xff0c;遵循一些普遍认同的编程规范和标准仍然是非常重要的。本文将探讨 C/C 编程中的一些命名规范及标准&#xff0c;以帮助开发者编写更…

使用C语言实现栈的插入、删除和排序操作

栈是一种后进先出(LIFO, Last In First Out)的数据结构,这意味着最后插入的元素最先被删除。在C语言中,我们可以通过数组或链表来实现栈。本文将使用数组来实现一个简单的栈,并提供插入(push)、删除(pop)以及排序(这里采用一种简单的排序方法,例如冒泡排序)的操作示…

08、如何预防SQL注入

目录 1、分析及其存在哪些危险 2、预防SQL注入 1、分析及其存在哪些危险 原理: SQL 注入是一种常见的网络攻击手段,攻击者通过在用户输入中插入恶意的 SQL 语句,利用程序对用户输入处理不当的漏洞,使恶意 SQL 语句被数据库服务器执行。 通常发生在应用程序将用户输入直接拼…

【爬虫】使用 Scrapy 框架爬取豆瓣电影 Top 250 数据的完整教程

前言 在大数据和网络爬虫领域&#xff0c;Scrapy 是一个功能强大且广泛使用的开源爬虫框架。它能够帮助我们快速地构建爬虫项目&#xff0c;并高效地从各种网站中提取数据。在本篇文章中&#xff0c;我将带大家从零开始使用 Scrapy 框架&#xff0c;构建一个简单的爬虫项目&am…

1.11 思维树(Tree-of-Thoughts, ToT):续写佳话

思维树(Tree-of-Thoughts, ToT):续写佳话 人工智能在推理和决策方面的突破,越来越依赖于模型能够以更高效、更灵活的方式进行推理。与传统的顺序性推理方法不同,**思维树(Tree-of-Thoughts,ToT)**提供了一种基于树状结构的推理方式,鼓励模型从多个角度进行探索,并在…

NVIDIA 下 基于Ubuntun20.04下 使用脚本安装 ros2-foxy 和 使用docker安装 ros2-foxy

一、前提介绍&#xff1a; 本文主要采用两种方式在NVIDIA 下基于 Ubuntun20.04安装 ros2-foxy。 使用环境&#xff1a; NVIDIA 为 Jetson 系列下 Jetson Xavier NX&#xff1b; Ubuntun版本&#xff1a;20.04 二、安装方法&#xff1a; 1、使用脚本编译方式&#xff1a; 使…

wx030基于springboot+vue+uniapp的养老院系统小程序

开发语言&#xff1a;Java框架&#xff1a;springbootuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#…

【人工智能】Python中的自动化机器学习(AutoML):如何使用TPOT优化模型选择

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门&#xff01; 解锁Python编程的无限可能&#xff1a;《奇妙的Python》带你漫游代码世界 随着机器学习在各行业的广泛应用&#xff0c;模型选择和优化成为了数据科学家面临的主要挑战之一。自动化机器学习&am…

计算机网络常见协议

目录 OSPF(Open Shortest Path First) NAT(Network Address Translation) ICMP (Internet Control Message Protocol) HTTPS&#xff08;SSL/TLS加密&#xff09; HTTPS协议 1. 对称加密 2. 非对称加密 3. 证书验证 4. 回顾https协议传输流程 HTTP TCP UDP 1. TCP&a…

1.7 ChatGPT:引领AI对话革命的致胜之道

ChatGPT:引领AI对话革命的致胜之道 随着人工智能(AI)技术的迅猛发展,特别是在自然语言处理(NLP)领域,OpenAI 的 ChatGPT 已经成为了举世瞩目的技术突破。从普通的自动化客服到深入的创作与协作,ChatGPT 通过其卓越的语言理解和生成能力,改变了人们与计算机交互的方式…

静态综合路由实验

实验拓扑 实验要求 1.除R5的环回地址外&#xff0c;整个其他所有网段基于192.168.1.0/24进行合理的IP地址划分 2.R1-R4每个路由器存在两个环回接口&#xff0c;用于模拟pc网段&#xff1b;地址也在192.168.1.0/24这个网络范围内 3.R1-R4上不能直接编写到达5.5.5.0/24的静态路由…

脚本工具:PYTHON

Python 是一种高级编程语言&#xff0c;以其简洁清晰的语法和强大的功能被广泛应用于各种领域&#xff0c;包括自动化脚本编写、数据分析、机器学习、Web开发等。以下是一些关于使用 Python 编写脚本工具的基本介绍、常用库以及一些实用技巧总结。 这里写目录标题 基础知识安装…