机器学习中的凸函数和梯度下降法

一、凸函数

在机器学习中,凸函数凸优化 是优化问题中的重要概念,许多机器学习算法的目标是优化一个凸函数。这些概念的核心思想围绕着优化问题的简化和求解效率。下面从简单直观的角度来解释。

1. 什么是凸函数?

数学定义

一个函数 f(x)f(x) 是凸函数,当且仅当它满足以下条件:

这意味着,对于 x1 和 x2 的任意两点,连接这两点的直线处于函数图像之上或与图像重合。

几何直观
  • 如果你把凸函数的图像想象成地形,它的形状类似一个“碗”或“凹面”。
  • 在函数图像上任意两点之间画一条直线,这条直线不会低于函数的曲线(或者说,曲线将直线包裹在下方)。
凸函数的性质
  1. 全局最小值等于局部最小值: 如果一个凸函数在某一点达到最小值,那么它就是全局最小值。
  2. 方便优化: 优化凸函数时,我们不需要担心掉入局部最小值,只需找到一个最小值点即可。
例子

2. 什么是凸优化?

定义

凸优化问题 是目标函数为凸函数,且约束条件(如果有)是凸集合的优化问题。它的通用形式是:

其中:

  • f(x) 是目标函数(需为凸函数)。
  • gi(x)是不等式约束(需定义一个凸集合)。
  • hj(x)是等式约束(需定义一个仿射集合,即线性约束)。
特点
  1. 容易求解: 因为凸优化问题没有局部最小值和全局最小值的区分,只需找到一个可行解的最小值点即可。
  2. 高效算法: 有许多高效算法可以解决凸优化问题,例如梯度下降法、牛顿法和拉格朗日乘子法。

3. 凸优化在机器学习中的应用

机器学习中的许多问题都可以形式化为凸优化问题,例如:

  • 线性回归: 最小化均方误差(MSE)时,目标函数是凸的。 
  • 逻辑回归: 使用交叉熵损失时,目标函数是凸的(在参数空间中)。
  • 支持向量机(SVM): SVM 的优化问题是一个典型的凸优化问题,目标是最大化分类间隔,同时最小化分类错误。

4. 凸函数与非凸函数的对比

特性凸函数非凸函数
优化难度较低(全局最优点易求)较高(可能掉入局部最优点)
形状类似“碗”或凹形结构类似“山峰”或复杂结构
常见应用线性回归、逻辑回归、SVM等深度学习(神经网络)等

5. 示例:梯度下降优化凸函数

以 f(x) = x^2 + 2x + 1 为例:

  1. 目标: 最小化 f(x)。
  2. 过程:
    • 从某个初始点 x_0 开始。
    • 计算梯度 ∇f(x)=2x+2。
    • 更新 x 的值:
    • 继续迭代,直到 ∇f(x)足够接近零。

因为 f(x) 是凸函数,梯度下降法一定能找到全局最优点(即 x = -1)。

6. 总结

  • 凸函数 是形状类似“碗”的函数,具有简单、易优化的特性。
  • 凸优化 是优化凸函数的过程,广泛应用于机器学习中的许多算法中。
  • 理解凸函数和凸优化有助于选择合适的算法,并提升机器学习模型的性能和稳定性。

二、直观理解梯度下降法

初学者可以通过一些直观的类比和生活中的简单例子,理解梯度下降法是如何找到函数的最小值的。以下是一个通俗易懂的解释:

梯度下降法直观理解:从山坡上走到谷底

1. 场景类比

想象你站在一座山坡上,周围的地形是一个曲面(对应于函数 f(x))。你的目标是找到山谷的最低点(对应于函数的最小值)。

  • 当前所在位置:表示你当前的参数值 x。
  • 地形的坡度:表示函数在当前点的梯度 ∇f(x)。
  • 梯度方向:坡度最大增加的方向。
  • 负梯度方向:坡度下降最快的方向。
2. 方法步骤
  1. 观察坡度:你用脚感受当前的坡度,判断地形最陡的方向。
  2. 选择方向:选择往坡度下降最快的方向走(负梯度方向)。
  3. 决定步长:每次移动的距离由学习率 α决定。如果步长太大,可能错过谷底;如果步长太小,可能走得很慢。
  4. 重复移动:每走一步,你停下来再感受一下坡度,调整方向,继续走。
  5. 到达谷底:当你发现地形变得平坦(梯度接近 0)时,说明你已经接近谷底。
3. 梯度下降法中的要素
  • 梯度方向:告诉你当前点周围地形的变化趋势。
  • 步长(学习率 α\alpha):决定了你每次移动的距离。步长太大容易错过谷底,步长太小走得太慢。
  • 迭代过程:通过不断调整方向和步长,最终到达最低点。

具体例子:滑球找最低点

例子描述

把一个球放在一个碗的边缘(碗的形状就是函数曲面),球会沿着碗的曲面滚动,直到碗底。

  1. 球的当前位置:对应参数值 x。
  2. 碗的坡度:对应当前点的梯度 ∇f(x)。
  3. 滚动方向:球自然会向坡度减小的方向滚动(负梯度方向)。
  4. 停止滚动:当球到达碗底,坡度为 0,梯度下降法停止迭代。
例子公式化

假设碗的形状是函数 f(x)= x^2,碗的底部对应函数的最小值。

梯度下降法找到函数最小值的原因

  1. 梯度提供方向信息

    • 梯度告诉我们函数值增大或减小的趋势。
    • 负梯度方向是函数值减小最快的方向。
  2. 每次逼近更低的函数值

    • 每次更新参数 x,函数值 f(x) 都会比上一次更小。
    • 通过不断迭代,函数值逐步接近最小值。
  3. 迭代过程收敛

    • 当梯度接近 0 时,说明函数值几乎不再变化,已经接近最优点。

总结

梯度下降法本质上就是沿着函数值减小最快的方向一步步走向最低点。通过调整步长和方向,可以高效地找到函数的最小值。对于初学者,想象沿着山坡往谷底走,或者滑球到碗底的过程,是理解梯度下降法的最佳方法。

三、梯度下降法什么时候停止

梯度下降法通常会在以下几种条件满足之一时停止迭代,具体的停止标准可以根据问题的需求来选择:

1. 梯度足够小

  • 条件:当梯度的模(大小)足够接近零时:

  • 原因:梯度接近零意味着当前位置的斜率很小,函数变化趋于平缓,可能已经接近最优点。

  • 优点:直观且易于实现。

2. 目标函数值的变化足够小

  • 条件:当两次迭代之间的目标函数值变化非常小时:

  • 原因:目标函数值几乎不再变化,表明可能已经接近最优值。

  • 适用场景:适合优化问题中,直接关心目标函数的数值。

3. 达到最大迭代次数

  • 条件:设定一个最大迭代次数 kmax,当迭代次数达到时停止:

    k≥kmax
  • 原因:防止陷入无尽的迭代,尤其是当问题无法收敛或收敛速度非常慢时。

  • 优点:提供了一个明确的上限,确保算法终止。

  • 缺点:可能停止时未达到真正的最优点。

4. 参数变化足够小

  • 条件:当两次迭代之间的参数更新很小时:

    • η:预设的小正数,称为参数变化阈值。
  • 原因:参数几乎没有更新,意味着已经接近收敛。

5. 手动终止

  • 条件:通过观察目标函数值、梯度或其他指标的变化,手动停止迭代。

  • 适用场景:在实验或调试过程中,有时可以人为判断算法是否接近最优解。

实践中的组合策略

在实际应用中,通常会组合多个停止条件,比如:

  1. 梯度足够小,或目标函数变化小。
  2. 超过最大迭代次数。
  3. 参数更新过小。

示例:

总结

梯度下降法的停止条件根据具体问题和优化目标选择,核心思想是找到一个平衡点,既不浪费计算资源,也能确保结果足够接近最优解。一般情况下,结合梯度大小、目标函数变化和最大迭代次数的条件是最常见的策略。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/66162.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows图形界面(GUI)-QT-C/C++ - Qt控件与布局系统详解

公开视频 -> 链接点击跳转公开课程博客首页 -> ​​​链接点击跳转博客主页 目录 Qt布局系统(Layouts) 布局管理器基础 高级布局技巧 嵌套布局 设置间距和边距 常用控件详解 按钮类控件 QPushButton (标准按钮) QRadioButton (单选按钮) QCheckBox (复选框) …

深入理解 ECMAScript 2024 新特性:字符串 isWellFormed 方法

ECMAScript 2024 引入了一个新的字符串实例方法:String.prototype.isWellFormed。这一新增功能是为了帮助开发者更容易地验证字符串是否为有效的 Unicode 文本。本文将详细介绍这一方法的使用场景、实现原理及其在实际应用中的价值。 String.prototype.isWellFormed…

生产管理看板助力节能科技公司实现数据自动化管理

在节能科技公司的生产过程中,数据管理的自动化是提高生产效率和产品质量的关键。然而,许多公司在数据记录、展示、对比和存档方面仍面临诸多痛点,如产品检测数据无法自动记录、缺乏直观的产线状态展示、检测数据对比繁琐耗时,以及…

【C++】B2112 石头剪子布

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯题目描述游戏规则:输入格式:输出格式:输入输出样例:解题分析与实现 💯我的做法实现逻辑优点与不足 &#x1f4af…

两分钟解决 :![rejected] master -> master (fetch first) , 无法正常push到远端库

目录 分析问题的原因解决 分析问题的原因 在git push的时候莫名遇到这种情况 若你在git上修改了如README.md的文件。由于本地是没有README.md文件的,所以导致 远端仓库git和本地不同步。 将远端、本地进行合并就可以很好的解决这个问题 注意:直接git pu…

微服务之松耦合

参考:https://microservices.io/post/architecture/2023/03/28/microservice-architecture-essentials-loose-coupling.html There’s actually two different types of coupling: runtime coupling - influences availability design-time coupling - influences…

hot100_240. 搜索二维矩阵 II

hot100_240. 搜索二维矩阵 II 直接遍历列减行增 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性: 每行的元素从左到右升序排列。 每列的元素从上到下升序排列。 示例 1: 输入:matrix [[1,4,7,1…

一步到位Python Django部署,浅谈Python Django框架

Django是一个使用Python开发的Web应用程序框架,它遵循MVC(Model-View-Controller)设计模式,旨在帮助开发人员更快、更轻松地构建和维护高质量的Web应用程序。Django提供了强大的基础设施和工具,以便于处理复杂的业务逻…

Apache PAIMON 学习

参考:Apache PAIMON:实时数据湖技术框架及其实践 数据湖不仅仅是一个存储不同类数据的技术手段,更是提高数据分析效率、支持数据驱动决策、加速AI发展的基础设施。 新一代实时数据湖技术,Apache PAIMON兼容Apache Flink、Spark等…

《计算机网络》课后探研题书面报告_了解PPPoE协议

PPPoE协议的工作原理与应用分析 摘 要 PPPoE(Point-to-Point Protocol over Ethernet)是一种广泛应用于宽带接入的网络协议,特别是在DSL(数字用户线路)和光纤网络中具有重要的应用价值。PPPoE结合了PPP协议的认证、加…

MAC上安装Octave

1. 当前最新版Octave是9.3版本,需要把mac os系统升级到14版本(本人之前的版本是10版本) https://wiki.octave.org/Octave_for_macOS octave的历史版本参考此文档:Octave for macOS (outdated) - Octavehttps://wiki.octave.org/Oc…

mysql-5.7.18保姆级详细安装教程

本文主要讲解如何安装mysql-5.7.18数据库: 将绿色版安装包mysql-5.7.18-winx64解压后目录中内容如下图,该例是安装在D盘根目录。 在mysql安装目录中新建my.ini文件,文件内容及各配置项内容如下图,需要先将配置项【skip-grant-tab…

VSCode连接Github的重重困难及解决方案!

一、背景: 我首先在github创建了一个新的项目,并自动创建了readme文件其次在vscode创建项目并写了两个文件在我想将vscode的项目上传到对应的github上时,错误出现了 二、报错及解决方案: 1.解决方案: 需要在git上配置用…

数据分析:非度量多维排列 NMDS (Non-metric multidimensional scaling)ANOSIM检验分析

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍原理步骤加载R包数据下载导入数据数据预处理计算距离矩阵ANOSIM检验非度量多维排列NMDS应力值(stress value)画图输出系统信息介绍 非度量多维排列(Non-metric Multidimensiona…

Open FPV VTX开源之ardupilot配置

Open FPV VTX开源之ardupilot配置 1. 源由2. 配置3. 总结4. 参考资料5. 补充5.1 飞控固件版本5.2 配置Ardupilot的BF OSD5.3 OSD偏左问题 1. 源由 飞控嵌入式OSD - ardupilot配置使用ardupliot配套OSD图片。 Choose correct font depending on Flight Controller SW. ──>…

硬件实用技巧:TPS54331DR横杠标识识别1引脚

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/145116969 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…

Linux离线部署ELK

文章目录 前期准备开始安装安装elastic search安装logstash安装kibana 配置ELK配置ElasticSearch配置logstash配置kibana 启动ELK启动命令启动测试 设置ELK策略创建ILM策略将ILM策略与日志index关联查看索引是否被ILM策略管理 前期准备 ELK包含三部分软件 ElasticSearch用作搜…

Node.js - Express框架

1. 介绍 Express 是一个基于 Node.js 的 Web 应用程序框架,主要用于快速、简便地构建 Web 应用程序 和 API。它是目前最流行的 Node.js Web 框架之一,具有轻量级、灵活和功能丰富的特点。 核心概念包括路由,中间件,请求与响应&a…

《光学遥感图像中显著目标检测的多内容互补网络》2021-9

一、简介 在本文中,我们提出了一种新的多内容互补网络 (MCCNet) 来探索 RSI-SOD 的多内容互补性。具体来说,MCCNet 基于通用的编码器-解码器架构,并包含一个名为 multi-content complementation module (MC…

【STM8S】STM8S之自定义短、长、连击按键

本文最后修改时间:2018年10月22日 01:57 一、本节简介 本文介绍STM8S系列如何实现按键的短按、长按、连击。 二、实验平台 编译软件:IAR for STM8 1.42.2 硬件平台:stm8s003f3p6开发板 仿真器:ST-LINK 库函数版本&#xff1a…