L1G5000 XTuner 微调个人小助手认知

使用 XTuner 微调 InternLM2-Chat-7B 实现自己的小助手认知

  • 1 环境配置与数据准备
    • 步骤 0. 使用 conda 先构建一个 Python-3.10 的虚拟环境
    • 步骤 1. 安装 XTuner
  • 修改提供的数据
    • 步骤 0. 创建一个新的文件夹用于存储微调数据
    • 步骤 1. 创建修改脚本
    • 步骤 2. 执行脚本
    • 步骤 3. 查看数据
  • 训练启动
    • 步骤 0. 复制模型
    • 步骤 1. 修改 Config
    • 步骤 2. 启动微调
    • 步骤 3. 权重转换
    • 步骤 4. 模型合并
  • 模型 WebUI 对话

参考文档: 书生训练营
XTuner 文档链接

1 环境配置与数据准备

步骤 0. 使用 conda 先构建一个 Python-3.10 的虚拟环境

cd ~
#git clone 本repo
git clone https://github.com/InternLM/Tutorial.git -b camp4
mkdir -p /root/finetune && cd /root/finetune
conda create -n xtuner-env python=3.10 -y
conda activate xtuner-env

步骤 1. 安装 XTuner

cd /root/Tutorial/docs/L1/XTuner
pip install -r requirements.txt
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
# requirements.txt
accelerate==0.27.0
addict==2.4.0
aiohttp==3.9.3
aiosignal==1.3.1
aliyun-python-sdk-core==2.14.0
aliyun-python-sdk-kms==2.16.2
altair==5.2.0
annotated-types==0.6.0
anyio==4.2.0
argon2-cffi==23.1.0
argon2-cffi-bindings==21.2.0
arrow==1.3.0
arxiv==2.1.0
asttokens==2.4.1
async-lru==2.0.4
async-timeout==4.0.3
attrs==23.2.0
Babel==2.14.0
beautifulsoup4==4.12.3
bitsandbytes==0.42.0
bleach==6.1.0
blinker==1.7.0
cachetools==5.3.2
certifi==2024.2.2
cffi==1.16.0
charset-normalizer==3.3.2
click==8.1.7
colorama==0.4.6
comm==0.2.1
contourpy==1.2.0
crcmod==1.7
cryptography==42.0.2
cycler==0.12.1
datasets==2.17.0
debugpy==1.8.1
decorator==5.1.1
deepspeed==0.14.4
defusedxml==0.7.1
dill==0.3.8
distro==1.9.0
einops==0.8.0
einx==0.3.0
et-xmlfile==1.1.0
exceptiongroup==1.2.0
executing==2.0.1
fastapi==0.112.0
fastjsonschema==2.19.1
feedparser==6.0.10
filelock==3.14.0
fonttools==4.48.1
fqdn==1.5.1
frozendict==2.4.4
frozenlist==1.4.1
fsspec==2023.10.0
func-timeout==4.3.5
gast==0.5.4
gitdb==4.0.11
GitPython==3.1.41
google-search-results==2.4.2
griffe==0.40.1
h11==0.14.0
hjson==3.1.0
httpcore==1.0.3
httpx==0.26.0
huggingface-hub==0.24.2
idna==3.6
imageio==2.34.2
importlib-metadata==7.0.1
ipykernel==6.29.2
ipython==8.21.0
ipywidgets==8.1.2
isoduration==20.11.0
jedi==0.19.1
Jinja2==3.1.3
jmespath==0.10.0
json5==0.9.14
jsonpointer==2.4
jsonschema==4.21.1
jsonschema-specifications==2023.12.1
kiwisolver==1.4.5
lagent==0.2.1
lazy_loader==0.4
llvmlite==0.43.0
lxml==5.1.0
markdown-it-py==3.0.0
MarkupSafe==2.1.5
matplotlib==3.8.2
matplotlib-inline==0.1.6
mdurl==0.1.2
mistune==3.0.2
mmengine==0.10.3
modelscope==1.12.0
mpi4py_mpich==3.1.5
mpmath==1.3.0
multidict==6.0.5
multiprocess==0.70.16
nbclient==0.9.0
nbconvert==7.16.0
nbformat==5.9.2
nest-asyncio==1.6.0
networkx==3.2.1
ninja==1.11.1.1
notebook==7.0.8
notebook_shim==0.2.3
numba==0.60.0
numpy==1.26.4
nvidia-cublas-cu12==12.1.3.1
nvidia-cuda-cupti-cu12==12.1.105
nvidia-cuda-nvrtc-cu12==12.1.105
nvidia-cuda-runtime-cu12==12.1.105
nvidia-cudnn-cu12==8.9.2.26
nvidia-cufft-cu12==11.0.2.54
nvidia-curand-cu12==10.3.2.106
nvidia-cusolver-cu12==11.4.5.107
nvidia-cusparse-cu12==12.1.0.106
nvidia-nccl-cu12==2.19.3
nvidia-nvjitlink-cu12==12.3.101
nvidia-nvtx-cu12==12.1.105
openai==1.12.0
opencv-python==4.9.0.80
openpyxl==3.1.2
oss2==2.17.0
overrides==7.7.0
packaging==24.1
pandas==2.2.0
pandocfilters==1.5.1
parso==0.8.3
peft==0.8.2
pexpect==4.9.0
phx-class-registry==4.1.0
pillow==10.2.0
platformdirs==4.2.0
prometheus-client==0.19.0
prompt-toolkit==3.0.43
protobuf==4.25.2
psutil==5.9.8
ptyprocess==0.7.0
pure-eval==0.2.2
py-cpuinfo==9.0.0
pyarrow==15.0.0
pyarrow-hotfix==0.6
pybase16384==0.3.7
pycparser==2.21
pycryptodome==3.20.0
pydantic==2.6.1
pydantic_core==2.16.2
pydeck==0.8.1b0
Pygments==2.17.2
pynvml==11.5.0
pyparsing==3.1.1
python-dateutil==2.8.2
python-json-logger==2.0.7
python-pptx==0.6.23
PyYAML==6.0.1
pyzmq==25.1.2
qtconsole==5.5.1
QtPy==2.4.1
referencing==0.33.0
regex==2023.12.25
rfc3339-validator==0.1.4
rfc3986-validator==0.1.1
rich==13.4.2
rpds-py==0.17.1
safetensors==0.4.2
scikit-image==0.24.0
scipy==1.12.0
seaborn==0.13.2
Send2Trash==1.8.2
sentencepiece==0.1.99
sgmllib3k==1.0.0
simplejson==3.19.2
six==1.16.0
smmap==5.0.1
sniffio==1.3.0
sortedcontainers==2.4.0
soupsieve==2.5
stack-data==0.6.3
starlette==0.37.2
sympy==1.12
tenacity==8.2.3
termcolor==2.4.0
terminado==0.18.0
tifffile==2024.7.24
tiktoken==0.6.0
timeout-decorator==0.5.0
tinycss2==1.2.1
tokenizers==0.15.2
toml==0.10.2
tomli==2.0.1
toolz==0.12.1
torch==2.2.1
torchvision==0.17.1
tornado==6.4
tqdm==4.65.2
traitlets==5.14.1
transformers==4.39.0
transformers-stream-generator==0.0.4
triton==2.2.0
types-python-dateutil==2.8.19.20240106
typing_extensions==4.9.0
tzdata==2024.1
tzlocal==5.2
uri-template==1.3.0
urllib3==1.26.18
uvicorn==0.30.6
validators==0.22.0
watchdog==4.0.0
wcwidth==0.2.13
webcolors==1.13
webencodings==0.5.1
websocket-client==1.7.0
widgetsnbextension==4.0.10
XlsxWriter==3.1.9
xtuner==0.1.23
xxhash==3.4.1
yapf==0.40.2
yarl==1.9.4
zipp==3.17.0

验证一下:

xtuner list-cfg
在这里插入图片描述

修改提供的数据

步骤 0. 创建一个新的文件夹用于存储微调数据

mkdir -p /root/finetune/data && cd /root/finetune/data
cp -r /root/Tutorial/data/assistant_Tuner.jsonl  /root/finetune/data

步骤 1. 创建修改脚本

# 创建 `change_script.py` 文件
touch /root/finetune/data/change_script.py
import json
import argparse
from tqdm import tqdmdef process_line(line, old_text, new_text):# 解析 JSON 行data = json.loads(line)# 递归函数来处理嵌套的字典和列表def replace_text(obj):if isinstance(obj, dict):return {k: replace_text(v) for k, v in obj.items()}elif isinstance(obj, list):return [replace_text(item) for item in obj]elif isinstance(obj, str):return obj.replace(old_text, new_text)else:return obj# 处理整个 JSON 对象processed_data = replace_text(data)# 将处理后的对象转回 JSON 字符串return json.dumps(processed_data, ensure_ascii=False)def main(input_file, output_file, old_text, new_text):with open(input_file, 'r', encoding='utf-8') as infile, \open(output_file, 'w', encoding='utf-8') as outfile:# 计算总行数用于进度条total_lines = sum(1 for _ in infile)infile.seek(0)  # 重置文件指针到开头# 使用 tqdm 创建进度条for line in tqdm(infile, total=total_lines, desc="Processing"):processed_line = process_line(line.strip(), old_text, new_text)outfile.write(processed_line + '\n')if __name__ == "__main__":parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")parser.add_argument("input_file", help="Input JSONL file to process")parser.add_argument("output_file", help="Output file for processed JSONL")parser.add_argument("--old_text", default="尖米", help="Text to be replaced")parser.add_argument("--new_text", default="闻星", help="Text to replace with")args = parser.parse_args()main(args.input_file, args.output_file, args.old_text, args.new_text)

然后修改如下: 打开 change_script.py ,修改 --new_text 中 default=“闻星” 为你的名字

步骤 2. 执行脚本

# usage:python change_script.py {input_file.jsonl} {output_file.jsonl}
cd ~/finetune/data
python change_script.py ./assistant_Tuner.jsonl ./assistant_Tuner_change.jsonl

步骤 3. 查看数据

cat assistant_Tuner_change.jsonl | head -n 3

训练启动

步骤 0. 复制模型

在InternStudio开发机中的已经提供了微调模型,可以直接软链接即可。

本模型位于/root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat

mkdir /root/finetune/modelsln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/finetune/models/internlm2_5-7b-chat

步骤 1. 修改 Config

# cd {path/to/finetune}
cd /root/finetune
mkdir ./config
cd config
xtuner copy-cfg internlm2_5_chat_7b_qlora_alpaca_e3 ./

修改config文件,

#######################################################################
#                          PART 1  Settings                           #
#######################################################################
- pretrained_model_name_or_path = 'internlm/internlm2_5-7b-chat'
+ pretrained_model_name_or_path = '/root/finetune/models/internlm2_5-7b-chat'- alpaca_en_path = 'tatsu-lab/alpaca'
+ alpaca_en_path = '/root/finetune/data/assistant_Tuner_change.jsonl'evaluation_inputs = [
-    '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
+    '请介绍一下你自己', 'Please introduce yourself'
]#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(type=process_hf_dataset,
-   dataset=dict(type=load_dataset, path=alpaca_en_path),
+   dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),tokenizer=tokenizer,max_length=max_length,
-   dataset_map_fn=alpaca_map_fn,
+   dataset_map_fn=None,template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),remove_unused_columns=True,shuffle_before_pack=True,pack_to_max_length=pack_to_max_length,use_varlen_attn=use_varlen_attn)

修改后如下

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,BitsAndBytesConfig)from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
pretrained_model_name_or_path = '/root/finetune/models/internlm2_5-7b-chat'
use_varlen_attn = False# Data
alpaca_en_path = '/root/finetune/data/assistant_Tuner_change.jsonl'
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 2048
pack_to_max_length = True# parallel
sequence_parallel_size = 1# Scheduler & Optimizer
batch_size = 1  # per_device
accumulative_counts = 1
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 0
max_epochs = 3
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1  # grad clip
warmup_ratio = 0.03# Save
save_steps = 500
save_total_limit = 2  # Maximum checkpoints to keep (-1 means unlimited)# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = SYSTEM_TEMPLATE.alpaca
evaluation_inputs = ['请介绍一下你自己', 'Please introduce yourself'
]#######################################################################
#                      PART 2  Model & Tokenizer                      #
#######################################################################
tokenizer = dict(type=AutoTokenizer.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,padding_side='right')model = dict(type=SupervisedFinetune,use_varlen_attn=use_varlen_attn,llm=dict(type=AutoModelForCausalLM.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=dict(type=BitsAndBytesConfig,load_in_4bit=True,load_in_8bit=False,llm_int8_threshold=6.0,llm_int8_has_fp16_weight=False,bnb_4bit_compute_dtype=torch.float16,bnb_4bit_use_double_quant=True,bnb_4bit_quant_type='nf4')),lora=dict(type=LoraConfig,r=64,lora_alpha=16,lora_dropout=0.1,bias='none',task_type='CAUSAL_LM'))#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(type=process_hf_dataset,dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),tokenizer=tokenizer,max_length=max_length,dataset_map_fn=None,template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),remove_unused_columns=True,shuffle_before_pack=True,pack_to_max_length=pack_to_max_length,use_varlen_attn=use_varlen_attn)sampler = SequenceParallelSampler \if sequence_parallel_size > 1 else DefaultSampler
train_dataloader = dict(batch_size=batch_size,num_workers=dataloader_num_workers,dataset=alpaca_en,sampler=dict(type=sampler, shuffle=True),collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(type=AmpOptimWrapper,optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),accumulative_counts=accumulative_counts,loss_scale='dynamic',dtype='float16')# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = [dict(type=LinearLR,start_factor=1e-5,by_epoch=True,begin=0,end=warmup_ratio * max_epochs,convert_to_iter_based=True),dict(type=CosineAnnealingLR,eta_min=0.0,by_epoch=True,begin=warmup_ratio * max_epochs,end=max_epochs,convert_to_iter_based=True)
]# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [dict(type=DatasetInfoHook, tokenizer=tokenizer),dict(type=EvaluateChatHook,tokenizer=tokenizer,every_n_iters=evaluation_freq,evaluation_inputs=evaluation_inputs,system=SYSTEM,prompt_template=prompt_template)
]if use_varlen_attn:custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]# configure default hooks
default_hooks = dict(# record the time of every iteration.timer=dict(type=IterTimerHook),# print log every 10 iterations.logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),# enable the parameter scheduler.param_scheduler=dict(type=ParamSchedulerHook),# save checkpoint per `save_steps`.checkpoint=dict(type=CheckpointHook,by_epoch=False,interval=save_steps,max_keep_ckpts=save_total_limit),# set sampler seed in distributed evrionment.sampler_seed=dict(type=DistSamplerSeedHook),
)# configure environment
env_cfg = dict(# whether to enable cudnn benchmarkcudnn_benchmark=False,# set multi process parametersmp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),# set distributed parametersdist_cfg=dict(backend='nccl'),
)# set visualizer
visualizer = None# set log level
log_level = 'INFO'# load from which checkpoint
load_from = None# whether to resume training from the loaded checkpoint
resume = False# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)# set log processor
log_processor = dict(by_epoch=False)

步骤 2. 启动微调

cd /root/finetune
conda activate xtuner-envxtuner train ./config/internlm2_5_chat_7b_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero2 --work-dir ./work_dirs/assistTuner

xtuner train 命令用于启动模型微调进程。
该命令需要一个参数:CONFIG 用于指定微调配置文件。这里我们使用修改好的配置文件 internlm2_5_chat_7b_qlora_alpaca_e3_copy.py。
训练过程中产生的所有文件,包括日志、配置文件、检查点文件、微调后的模型等,默认保存在 work_dirs 目录下,我们也可以通过添加 --work-dir 指定特定的文件保存位置。
–deepspeed 则为使用 deepspeed, deepspeed 可以节约显存。

步骤 3. 权重转换

模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 HuggingFace 格式文件,那么我们可以通过以下命令来实现一键转换。

我们可以使用 xtuner convert pth_to_hf 命令来进行模型格式转换

xtuner convert pth_to_hf 命令用于进行模型格式转换。
该命令需要三个参数:
CONFIG 表示微调的配置文件,
PATH_TO_PTH_MODEL 表示微调的模型权重文件路径,即要转换的模型权重,
SAVE_PATH_TO_HF_MODEL 表示转换后的 HuggingFace 格式文件的保存路径。
–fp32 代表以fp32的精度开启,假如不输入则默认为fp16
–max-shard-size {GB} 代表每个权重文件最大的大小(默认为2GB)

cd /root/finetune/work_dirs/assistTunerconda activate xtuner-env# 先获取最后保存的一个pth文件
pth_file=`ls -t /root/finetune/work_dirs/assistTuner/*.pth | head -n 1 | sed 's/:$//'`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_5_chat_7b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

步骤 4. 模型合并

对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(Adapter),训练完的这个层最终还是要与原模型进行合并才能被正常的使用。

对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter ,因此是不需要进行模型整合的。

在 XTuner 中提供了一键合并的命令 xtuner convert merge,在使用前我们需要准备好三个路径,包括原模型的路径、训练好的 Adapter 层的(模型格式转换后的)路径以及最终保存的路径。

xtuner convert merge命令用于合并模型。该命令需要三个参数:LLM 表示原模型路径,ADAPTER 表示 Adapter 层的路径, SAVE_PATH 表示合并后的模型最终的保存路径。

参数名解释
–max-shard-size {GB} 代表每个权重文件最大的大小(默认为2GB)
–device {device_name} 这里指的就是device的名称,可选择的有cuda、cpu和auto,默认为cuda即使用gpu进行运算
–is-clip 这个参数主要用于确定模型是不是CLIP模型,假如是的话就要加上,不是就不需要添加

cd /root/finetune/work_dirs/assistTuner
conda activate xtuner-envexport MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge /root/finetune/models/internlm2_5-7b-chat ./hf ./merged --max-shard-size 2GB

模型 WebUI 对话

cd ~/Tutorial/tools/L1_XTuner_code
# 直接修改xtuner_streamlit_demo.py脚本文件第18行
- model_name_or_path = "Shanghai_AI_Laboratory/internlm2_5-7b-chat"
+ model_name_or_path = "/root/finetune/work_dirs/assistTuner/merged"conda activate xtuner-envpip install streamlit==1.31.0
streamlit run /root/Tutorial/tools/L1_XTuner_code/xtuner_streamlit_demo.py
# 运行后,确保端口映射正常,如果映射已断开则需要重新做一次端口映射
ssh -CNg -L 8501:127.0.0.1:8501 root@ssh.intern-ai.org.cn -p *****

最后,通过浏览器访问:http://127.0.0.1:8501 来进行对话了
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/65687.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络协议安全的攻击手法

1.使用SYN Flood泛洪攻击: SYN Flood(半开放攻击)是最经典的ddos攻击之一,他利用了TCP协议的三次握手机制,攻击者通常利用工具或控制僵尸主机向服务器发送海量的变源端口的TCP SYN报文,服务器响应了这些报文后就会生成大量的半连…

人工智能学习路线全链路解析

一、基础准备阶段(预计 2-3 个月) (一)数学知识巩固与深化 线性代数(约 1 个月): 矩阵基础:回顾矩阵的定义、表示方法、矩阵的基本运算(加法、减法、乘法)&…

Redis 安装与 Spring Boot 集成指南

安装 Redis 和将其与 Spring Boot 应用集成是构建高效缓存解决方案的常见步骤。以下是详细的指南,帮助你在本地环境中安装 Redis,并在 Spring Boot 项目中配置和使用它。 1. 安装 Redis Windows 环境 Redis 官方并不直接支持 Windows,但你…

3d打印材料是塑料么?pla petg

3D 打印材料不仅限于塑料,但塑料确实是最常见的材料类型之一。以下是一些常用的3D打印塑料材料的介绍: 1. PLA(聚乳酸) • 特点:可生物降解,环保,容易打印,表面光滑。 • 适用…

linux-磁盘io性能指标!

一. 引文: 平时查看或者监控磁盘io时,基本上都是用的现成的工具/脚本, 对其了解的还是很浅,特参考一些资料整理了下,留个随笔。 二.磁盘I/O性能指标: 磁盘 I/O 是 Unix/Linux 系统管理中一个非常重要的组成部分。磁盘…

Excel 技巧08 - 如何计算某类(比如红色背景色)单元格的总和? (★)

本文讲了如何在Excel中计算某类(比如红色背景色)单元格的总和。 1,如何计算某类(比如红色背景色)单元格的总和? 技巧就是先把它们给标记出来,然后就好统计了。 那么如何找出来呢? 对,就是通过红色。 按下Ctrl F 点…

awr报告无法生成:常见分析手段

awr报告无法生成:常见分析手段 STATISTICS_LEVEL和OPEN_MODEAWR快照是否能自动生成?AWR快照能否手动生成?日志有无ORA-12751或ORA-32701报错?MMON进程是否被挂起?排查数据库隐藏参数分析快照生成错误信息分析AWR Snapshot Tracing分析AWR Table Flush是否超时STATISTICS_L…

uni-app无限级树形组件简单实现

因为项目一些数据需要树形展示&#xff0c;但是官网组件没有。现在简单封装一个组件在app中使用&#xff0c;可以无线嵌套&#xff0c;展开&#xff0c;收缩&#xff0c;获取子节点数据等。 简单效果 组件TreeData <template><view class"tree"><te…

互联网架构变迁:从 TCP/IP “呼叫” 到 NDN “内容分发” 的逐浪之旅

本文将给出关于互联网架构演进的一个不同视角。回顾一下互联网的核心理论基础产生的背景&#xff1a; 左边是典型的集中控制通信网络&#xff0c;很容易被摧毁&#xff0c;而右边的网络则没有单点问题&#xff0c;换句话说它很难被全部摧毁&#xff0c;与此同时&#xff0c;分…

移远BC28_opencpu方案_pin脚分配

先上图&#xff0c;BC28模块的pin脚如图所示&#xff1a; 下面看看GPIO的复用管脚 然后我自己整理了一份完整的pin功能列表

Eureka缓存机制

一、Eureka的CAP特性 Eureka是一个AP系统&#xff0c;它优先保证可用性&#xff08;A&#xff09;和分区容错性&#xff08;P&#xff09;&#xff0c;而不保证强一致性&#xff08;C&#xff09;。这种设计使得Eureka在分布式系统中能够应对各种故障和分区情况&#xff0c;保…

2025年第三届“华数杯”国际赛A题解题思路与代码(Python版)

游泳竞技策略优化模型代码详解 第一题&#xff1a;速度优化模型 在这一部分&#xff0c;我们将详细解析如何通过数学建模来优化游泳运动员在不同距离比赛中的速度分配策略。 1. 模型概述 我们的模型主要包含三个核心文件&#xff1a; speed_optimization.py: 速度优化的核…

micro-app【微前端系列教程】禁用样式隔离

全局禁用样式隔离 所有应用的样式隔离都会停止 import microApp from micro-zoe/micro-appmicroApp.start({disableScopecss: true, // 默认值false })指定子应用取消禁用样式隔离 <micro-app namexx urlxx disableScopecssfalse></micro-app>指定子应用禁用样式…

深度学习笔记11-优化器对比实验(Tensorflow)

&#x1f368; 本文为&#x1f517;365天深度学习训练营中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 目录 一、导入数据并检查 二、配置数据集 三、数据可视化 四、构建模型 五、训练模型 六、模型对比评估 七、总结 一、导入数据并检查 import pathlib,…

FFmpeg Muxer HLS

使用FFmpeg命令来研究它对HLS协议的支持程度是最好的方法&#xff1a; ffmpeg -h muxerhls Muxer HLS Muxer hls [Apple HTTP Live Streaming]:Common extensions: m3u8.Default video codec: h264.Default audio codec: aac.Default subtitle codec: webvtt. 这里面告诉我…

Apache和PHP:构建动态网站的黄金组合

在当今的互联网世界&#xff0c;网站已经成为了企业、个人和机构展示自己、与用户互动的重要平台。而在这些动态网站的背后&#xff0c;Apache和PHP无疑是最受开发者青睐的技术组合之一。这一组合提供了高效、灵活且可扩展的解决方案&#xff0c;帮助您快速搭建出强大的网站&am…

git相关操作笔记

git相关操作笔记 1. git init git init 是一个 Git 命令&#xff0c;用于初始化一个新的 Git 仓库。执行该命令后&#xff0c;Git 会在当前目录创建一个 .git 子目录&#xff0c;这是 Git 用来存储所有版本控制信息的地方。 使用方法如下&#xff1a; &#xff08;1&#xff…

Docker Desktop 构建java8基础镜像jdk安装配置失效解决

Docker Desktop 构建java8基础镜像jdk安装配置失效解决 文章目录 1.问题2.解决方法3.总结 1.问题 之前的好几篇文章中分享了在Linux(centOs上)和windows10上使用docker和docker Desktop环境构建java8的最小jre基础镜像&#xff0c;前几天我使用Docker Desktop环境重新构建了一个…

VUE + pdfh5 实现pdf 预览,主要用来uniappH5实现嵌套预览PDF

1. 安装依赖 npm install pdfh5 2. pdfh5 预览(移动端&#xff0c;h5) npm install pdfh5 , &#xff08;会报错&#xff0c;需要其他依赖&#xff0c;不能直接用提示的语句直接npm下载&#xff0c;依旧会报错&#xff0c;npm报错&#xff1a;These dependencies were not fou…

Node.js——fs(文件系统)模块

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…