【数据可视化-11】全国大学数据可视化分析

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907

💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

在这里插入图片描述

【数据可视化-11】全国大学数据可视化分析

  • 一、引言
  • 二、导入分析库与数据清洗
  • 三、pyecharts可视化实践
    • 3.1 高校地理分布图
    • 3.2 全国不同类型大学数量情况
    • 3.3 高校类型与层次分析图
    • 3.4 全国不同大学隶属情况
    • 3.5 高校的坐标点位分析
  • 四、结论与展望

一、引言

  本文将带你一起探索一份全国高校数据集,通过pyecharts这一强大的Python可视化库,将抽象的数据转化为直观的图表,揭示高校分布、类型、层次以及各类标签(如985、211、双一流)之间的关联与差异。

二、导入分析库与数据清洗

  导入相应的分析库并进行数据加载。

import pandas as pd
from collections import Counter
###画图
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.globals import ThemeType
from pyecharts.charts import Bar, Pie, Timeline
from pyecharts.faker import Fakerdf = pd.read_csv("全国大学数据.csv",encoding='gbk')
df.head()

  数据具体的格式如下:

  对省份字段进行标准化处理:

province_mapping = {'北京':"北京市",'天津':"天津市",'河北':"河北省",'山西':"山西省",'内蒙古':"内蒙古自治区",'辽宁':"辽宁省"...
}df['省份'] = df['省份'].map(province_mapping)

三、pyecharts可视化实践

3.1 高校地理分布图

  使用pyecharts的Map组件,我们可以直观地展示全国高校的地理分布情况。通过颜色深浅或图标大小来反映各省份高校数量的多少,让读者一眼就能看出哪些地区是高等教育的重镇。同时,结合交互功能,读者可以点击地图上的省份,查看详细的高校列表。

from pyecharts.charts import Map
from pyecharts import options as opts
import pandas as pd# 假设df为预处理后的DataFrame
province_counts = df['省份'].value_counts().reset_index()
province_counts.columns = ['省份', '高校数量']map_chart = (Map().add("高校数量", [list(z) for z in zip(province_counts['省份'], province_counts['高校数量'])], "china").set_global_opts(title_opts=opts.TitleOpts(title="全国高校地理分布"),visualmap_opts=opts.VisualMapOpts(max_=max(province_counts['高校数量'])),)
)
map_chart.render("高校地理分布图.html")

  从图中我们可以发现高校数量最多是江苏省,拥有168所搞笑;长三角地区的高校明显高于其它地区,中部四川省高校最多,南部广东省高校最多,西部地区高校分布的数量相对较少;

3.2 全国不同类型大学数量情况

un_type = df['类型'].tolist()
result = Counter(un_type)
# 排序
d = sorted(result.items(), key=lambda x: x[1], reverse=True)
print(d)
key = [i[0] for i in d]
value = [i[1] for i in d]# 链式调用
bar = (Bar(init_opts=opts.InitOpts(  # 初始配置项theme=ThemeType.MACARONS,animation_opts=opts.AnimationOpts(animation_delay=1000, animation_easing="cubicOut"  # 初始动画延迟和缓动效果))).add_xaxis(xaxis_data=key)  # x轴.add_yaxis(series_name="全国不同类型大学数量情况", y_axis=value)  # y轴.set_global_opts(title_opts=opts.TitleOpts(title='', subtitle='',  # 标题配置和调整位置title_textstyle_opts=opts.TextStyleOpts(font_family='SimHei', font_size=25, font_weight='bold', color='red',), pos_left="90%", pos_top="10",),xaxis_opts=opts.AxisOpts(name='类型', axislabel_opts=opts.LabelOpts(rotate=45)),# 设置x名称和Label rotate解决标签名字过长使用yaxis_opts=opts.AxisOpts(name='数量'),))
bar.render("全国不同类型大学数量情况.html")


  从图中我们可以发现理工类和综合类的院校最多,也就是高考时理科照生多的原因;

3.3 高校类型与层次分析图

  接下来,我们利用PieBar组件来分析高校的类型与层次。通过饼图展示公办与民办高校的占比,通过条形图展示本科与专科高校的分布情况。这些图表不仅能够帮助我们了解高校的构成,还能揭示不同类型与层次高校之间的差异。

attr = df['公或民办'].tolist()
result = Counter(attr)
# 排序
d = sorted(result.items(), key=lambda x: x[1], reverse=True)
print(d)
key = [i[0] for i in d]
value = [i[1] for i in d]
pie = (Pie().add("公或民办类型数量",[list(z) for z in zip(key, value)],rosetype="radius",radius=["30%", "55%"],).set_global_opts(title_opts=opts.TitleOpts("公或民办类型数量"))
)
pie.render("公办与民办高校占比图.html")


  从图书可以看出高校有三种出资方式,分别是公办、民办和中外合作办学;其中公办的高校最多有2010所。

# 分析本科与专科高校的分布情况
undergraduate_vocational_distribution = df['本或专科'].value_counts()
undergraduate_vocational_distribution = undergraduate_vocational_distribution.reset_index()
undergraduate_vocational_distribution.columns = ['层次', '数量']# 创建条形图展示本科与专科高校的分布情况
bar_chart = (Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT)).add_xaxis(undergraduate_vocational_distribution['层次'].tolist()).add_yaxis("高校数量", undergraduate_vocational_distribution['数量'].tolist()).set_global_opts(title_opts=opts.TitleOpts(title="本科与专科高校分布情况"),xaxis_opts=opts.AxisOpts(name="层次"),yaxis_opts=opts.AxisOpts(name="数量"),)
)
bar_chart.render("本科与专科高校分布图.html")


  从图中可以发现高校中本科和专科数据差不多持平。

3.4 全国不同大学隶属情况

  最后,我们利用ScatterGraph组件分析城市与高校之间的关联。通过散点图展示各城市高校的数量与分布,或者通过关系图展示城市与高校之间的隶属关系。

attr = data['隶属于'].tolist()
result = Counter(attr)
# 排序
d = sorted(result.items(), key=lambda x: x[1], reverse=True)
print(d)
key = [i[0] for i in d]
value = [i[1] for i in d]
c = (Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK)).add_xaxis(xaxis_data=key).add_yaxis("数量", y_axis=value).set_global_opts(title_opts=opts.TitleOpts(title="全国不同大学隶属情况"),datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")],))
c.render_notebook()

  从图中可以看到各个不同单位管理高校的数量,其中河南省管理的高校数量最多,教育部直属管的高校有84所等

3.5 高校的坐标点位分析

  可以使用百度的地名地址解析接口,将高校的地址转成经纬度,经纬度转成热力图如下;

四、结论与展望

  通过本次全国高校数据集的可视化探索,我们不仅直观地展示了高校的地理分布、类型与层次、标签情况以及与城市的关联,还深刻理解了数据可视化的力量。它让我们能够以前所未有的方式洞察数据背后的故事,为教育决策提供了有力的支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/65229.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

141.《mac m1安装mongodb详细教程》

文章目录 下载从官网下载安装包 下载后双击解压出文件夹安装文件名修改为 mongodb配置data存放位置和日志log的存放位置启动方式一方式二方式二:输入mongo报错以及解决办法 本人电脑 m2 pro,属于 arm 架构 下载 官网地址: mongodb官网 怎么查看自己电脑应该下载哪个版本,输入…

frameworks 之 Winscope 工具

frameworks 之 Winscope 工具 1. 手机端开启2. 加载追踪的文件2.1 Android12 3. 分析文件 Winscope 是一款 Web 工具,可以让用户在动画和转换期间和之后记录、重放和分析多个系统服务的状态。Winscope 将所有相关的系统服务状态记录在一个跟踪文件中。使用带有跟踪文…

【姿态估计实战】使用OpenCV和Mediapipe构建锻炼跟踪器【附完整源码与详细说明】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…

cityhash–对字符串的哈希算法

原文地址:cityhash–对字符串的哈希算法 – 无敌牛 欢迎参观我的个人博客:无敌牛 – 技术/著作/典籍/分享等 分享一个给字符串计算hash的开源库,谷歌出品。 源代码在:https://github.com/google/cityhash 可以自己下载&#x…

spring cloud微服务分布式架构

spring cloud微服务分布式架构 应用架构 单体应用架构:all in one 如:前端后端部署在一台服务器中 web应用和数据库放在同一台服务器中,只要服务器挂掉,应用就会终止。 分布式架构:将一个系统拆分为多个独立的组件&…

【HarmonyOS】鸿蒙应用点9图的处理(draw9patch)

【HarmonyOS】鸿蒙应用点9图的处理(draw9patch) 一、前言: 首先在鸿蒙中是不支持安卓 .9图的图片直接使用。只有类似拉伸的处理方案,鸿蒙提供的Image组件有与点九图相同功能的API设置。 可以通过设置resizable属性来设置Resiza…

深入Android架构(从线程到AIDL)_12 Android UI 单线程程序

目录 6、 Android UI 单线程程序 單線程程序概念 单线程可避免线程安全问题 SurfaceView与非UI线程 6、 Android UI 单线程程序 單線程程序概念 单线程程序意谓着两个(或多个)线程不能共享对象或变量值。Android的UI是单线程程序的环境。UI控件(如Button等)都是由UI线程所…

STM32-笔记36-ADC(模拟/数字转换器)

一、什么是ADC? 全称:Analog-to-Digital Converter,指模拟/数字转换器。 ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁。 12 位 ADC 是一种逐次逼近型模拟数字转换器(0…

房产销售系统(源码+数据库+文档)

亲测完美运行带论文:文末获取源码 文章目录 项目简介(论文摘要)运行视频包含的文件列表(含论文)前端运行截图后端运行截图 项目简介(论文摘要) 随着科学技术的飞速发展,各行各业都在…

游戏社交趋势下,游戏语音再升级!

如今,游戏已成为我们社交生活的一个重要娱乐方式,春节临近,与亲朋好友一起畅玩“开黑”无疑是节假日的一大乐趣。在游戏社交互动中,“游戏语音”不可或缺。在传统游戏语音领域,多人在线游戏如 MOBA、FPS 和 MMORPG 的实…

HTML5实现好看的博客网站、通用大作业网页模板源码

HTML5实现好看的博客网站、通用大作业网页模板源码 前言一、设计来源1.1 主界面1.2 列表界面1.3 文章界面 二、效果和源码2.1 动态效果2.2 源代码 源码下载结束语 HTML5实现好看的博客网站、通用大作业网页模板源码,博客网站源码,HTML模板源码&#xff0…

ArcGIS中怎么把数据提取到指定范围(裁剪、掩膜提取)

最近,经常能收到怎么把数据提取到指定范围、栅格数据怎么裁剪、矢量数据怎么裁剪、栅格数据怎么掩膜提取的咨询。 下面是我对这个问题的解决思路: 对于矢量数据: ①首先把数据加载进来 ②软件界面上面的工具栏找到→地理处理→裁剪&#x…

node.js内置模块之---stream 模块

stream 模块的作用 在 Node.js 中,stream 模块是一个用于处理流(stream)的核心模块。流是一种处理数据的抽象方式,允许程序处理大量数据时不会一次性将所有数据加载到内存中,从而提高性能和内存效率。通过流&#xff0…

手持PDA终端,提升零售门店管理效率

随着科技的不断进步和零售行业的持续发展,手持PDA终端的应用将会越来越广泛。它将不断融合更多先进的技术和功能,为零售门店管理带来更加便捷、高效、智能的解决方案。 手持PDA终端是集成了数据处理、条码扫描、无线通信等多种功能于一体的便携式设备‌…

【51单片机-零基础chapter1】

安装软件(配套的有,不多赘述) 1.管理员身份运行keil和破解软件kegen 将CID代码复制粘贴到 一定要管理员方式,不然会error 插入板子 我的电脑,管理 1.如果是拯救者,查看端口,如果没有则显示隐藏 2.苹果不知道,好像不可以 3.其他电脑在"其他设备找" (注:本人在校已…

使用JMeter玩转tidb压测

作者: du拉松 原文来源: https://tidb.net/blog/3f1ada39 一、前言 tidb是mysql协议的,所以在使用过程中使用tidb的相关工具连接即可。因为jmeter是java开发的相关工具,直接使用mysql的jdbc驱动包即可。 二、linux下安装jmet…

Win11+WLS Ubuntu 鸿蒙开发环境搭建(一)

参考文章 Windows11安装linux子系统 WSL子系统迁移、备份与导入全攻略 如何扩展 WSL 2 虚拟硬盘的大小 Win10安装的WSL子系统占用磁盘空间过大如何释放 《Ubuntu — 调整文件系统大小命令resize2fs》 penHarmony南向开发笔记(一)开发环境搭建 一&a…

基于深度学习算法的AI图像视觉检测

基于人工智能和深度学习方法的现代计算机视觉技术在过去10年里取得了显著进展。如今,它被广泛用于图像分类、人脸识别、图像中物体的识别等。那么什么是深度学习?深度学习是如何应用在视觉检测上的呢? 什么是深度学习? 深度学习是…

HuatuoGPT-o1:基于40K可验证医学问题的两阶段复杂推理增强框架,通过验证器引导和强化学习提升医学模型的推理能力

HuatuoGPT-o1:基于40K可验证医学问题的两阶段复杂推理增强框架,通过验证器引导和强化学习提升医学模型的推理能力 论文大纲理解1. 确认目标2. 分析过程3. 实现步骤4. 效果展示 解法拆解全流程提问俩阶段详细分析 论文:HuatuoGPT-o1, Towards …

硬件基础知识笔记(2)——二级管、三极管、MOS管

Part 2 二级管、三极管、MOS管 1、二级管1.1肖特基二极管和硅二极管选型比较1.2到底是什么决定了二极管的最高工作频率?1.3二极管结电容和反向恢复时间都是怎么来的1.4肖特基二极管的工作原理1.5为什么要用肖特基二极管续流? 2、三极管2.1三极管工作原理…