01:C语言的本质

C语言的本质

  • 1、ARM架构与汇编
  • 2、局部变量初始化与空间分配
    • 2.1、局部变量的初始化
    • 2.1、局部变量数组初始化
  • 3、全局变量/静态变量初始化化与空间分配
  • 4、堆空间

1、ARM架构与汇编

ARM简要架构如下:CPU,ARM(能读能写),Flash(能读,写比较麻烦)。
在这里插入图片描述

2、局部变量初始化与空间分配

2.1、局部变量的初始化

CPU寄存器如下
在这里插入图片描述
CPU中的特殊寄存器
SP:栈空间地址指针
LR:返回地址
PC:保存Flash的代码段的值,执行那个机器码就保存哪个代码的对应的值

执行如下代码时,单片机内部是怎样执行操作的?

int main()
{volatile int a = 10;volatile int b = 20;a = a+b;return 0;
}

C语言代码被编译为单片机能识别的机器码后,烧录进入单片机的Flash的代码段
       在这里插入图片描述

如下为c代码转换的汇编码和机器码

0x08000014 B50C      PUSH     {r2-r3,lr}17:     volatile int a = 10; 
0x08000016 200A      MOVS     r0,#0x0A
0x08000018 9001      STR      r0,[sp,#0x04]18:     volatile int b = 20; 
0x0800001A 2014      MOVS     r0,#0x14
0x0800001C 9000      STR      r0,[sp,#0x00]19:     a = a+b; 20:      
0x0800001E E9DD1000  LDRD     r1,r0,[sp,#0]
0x08000022 4408      ADD      r0,r0,r1
0x08000024 9001      STR      r0,[sp,#0x04]21:         return 0; 
0x08000026 2000      MOVS     r0,#0x0022: } 
0x08000028 BD0C      POP      {r2-r3,pc}
常见的汇编指令:
PUSH:压栈,一般情况将CPU的寄存器压入RAM栈空间例如:PUSH  {r2-r3,lr}。表示将lr,r3,r2压入栈空间
MOVS:赋值,给CPU的寄存器赋值例如:MOVS  r0,#0x0A。表示给r0寄存器赋值0x0A
STR:写入数据,将CPU的寄存器数据写入栈空间里面例如:STR   r0,[sp,#0x00]。表示将r0的数据写入地址为sp + 0x00的空间
LDRD:读取2个数据,将栈空间的数据读取到CPU的寄存器里面例如:LDRD  r1,r0,[sp,#0]。表示将sp+0x00地址的数据读取到r0,将sp+0x04地址数据读取到r1
LDR:读取1个数据
ADD:做加法, 例如:ADD   r0,r0,r1。表示将r0 = r0 + r1
SUB:做减法例如:SUB   sp,sp,#0x68。表示将sp = sp - 0x68
POP:出栈,将CPU的寄存器退出栈空间,用于栈空间的释放。例如:POP {r2-r3,pc}。表示将r2,r3,pc对应的栈空间释放。

PUSH {r2-r3,lr}。表示依次将寄存器lr,r3,r2中的数据压入栈的空间里面。而压栈的同时,sp也会随着压栈而改变。如下图所示
【注】lr寄存器里面的数据是返回地址,即在执行main函数之前,将ENDP的地址保存在lr中。
在这里插入图片描述
如图:PUSH {r2-r3,lr}此汇编对应的机器码为0x08000014 B50C,当单片机执行完此机器码后,lr,r3,r2的寄存器的值被保存到RAM的栈区空间里面。而sp(栈空间地址光标)会指向地址0x2000 FFF4。
【注】此时的r2和r3寄存器的值为空。

volatile int a = 10对应的汇编:MOVS r0, #0x0A。表示将0x0A移入r0寄存器
                 STR r0, [sp,#0x04]。表示将r0的数据写入(sp + 0x04)的地址存储空间。sp = 0x2000 FFF4,则sp + 4 = 0x2000 FFF8。所以将r0的数据写入到栈空间的r3的位置。
【注】0x2000 FFF8为什么代表r3的位置,而不是代表r2的位置喃?一般情况下一个存储空间是以较小的那个地址表示的
在这里插入图片描述
在这里插入图片描述


volatile int b = 20对应的汇编:MOVS r0, #0x14。表示将0x0A移入r0寄存器
                 STR r0, [sp,#0x00]。表示将r0的数据写入(sp + 0x00)的地址存储空间。sp = 0x2000 FFF4,则sp + 0 = 0x2000 FFF4。所以将r0的数据写入到栈空间的r2的位置。
在这里插入图片描述
在这里插入图片描述


a = a + b对应的汇编:LDRD r1, r0, [sp,#0]。从栈区读取2个数据到r0,r1寄存器中。读取的起始地址为sp + 0 = 0x2000 FFF4。(r0接收地址sp + 0x00空间的数据,r1接收地址sp + 0x04空间的数据)即将b/0x14读取到r0,将a/0x0A读取到r1。
             ADD r0, r0, r1。表示将r1的数据加上r0的数据赋值r0。即r0 = 0x14 + 0x0A = 0x1E
            STR r0, [sp,#0x04]。表示将r0的数据写入(sp + 0x04)的地址存储空间。sp = 0x2000 FFF4,则sp + 0x04 = 0x2000 FFF8。所以将r0的数据写入到栈空间的r3的位置。

在这里插入图片描述
在这里插入图片描述
最终调试结果如下:
在这里插入图片描述



return 0;对应的汇编:MOVS r0,#0x00。表示将r0寄存器的数据清零。

栈的回收对应的汇编:POP {r2-r3,pc}。从栈中恢复寄存器 r2、r3 和 pc所对应栈空间的值,并且会自动调整栈指针 sp。最终sp指向0x20010000。表示之前使用的栈空间被回收。
【注】①低标号寄存器在栈空间对应低地址。进栈出栈都是。所以r2在栈空间的下面。②压栈时,先压进去sp在向下移动;出栈时,先出栈,sp在向上移动。

2.1、局部变量数组初始化

执行如下代码时,单片机内部是怎样执行操作的?

int main()
{volatile int a = 10;volatile char b[100];b[99] = 20;return 0;
}

如下为c代码转换的汇编码和机器码

0x08000014 B09A      SUB      sp,sp,#0x6817:     volatile int a = 10; 18:     volatile char b[100]; 
0x08000016 200A      MOVS     r0,#0x0A
0x08000018 9019      STR      r0,[sp,#0x64]19:     b[99] = 20; 
0x0800001A 2014      MOVS     r0,#0x14
0x0800001C F88D0063  STRB     r0,[sp,#0x63]20:         return 0; 
0x08000020 2000      MOVS     r0,#0x00

SUB sp,sp,#0x68。表示sp = sp - 0x68。则sp = 0x2000 FFFC - 0x68 = 0x2000 FF98。其中0x68 = 104。则表示在栈区开辟了104个字节
在这里插入图片描述
在这里插入图片描述

3、全局变量/静态变量初始化化与空间分配

#include "main.h"volatile int g_a = 123;//全局变量
int main()
{static volatile int g_b = 321;//静态变量volatile int a = 10;volatile int b = 20;a = a+b;g_b = g_a + g_b;return 0;
}

如上代码包含g_a全局变量,g_b静态变量。如下为c代码转换的汇编码和机器码

0x08000154 B50C      PUSH     {r2-r3,lr}7:     volatile int a = 10; 
0x08000156 200A      MOVS     r0,#0x0A
0x08000158 9001      STR      r0,[sp,#0x04]8:     volatile int b = 20; 
0x0800015A 2014      MOVS     r0,#0x14
0x0800015C 9000      STR      r0,[sp,#0x00]9:     a = a+b; 
0x0800015E E9DD1000  LDRD     r1,r0,[sp,#0]
0x08000162 4408      ADD      r0,r0,r1
0x08000164 9001      STR      r0,[sp,#0x04]10:     g_b = g_a + g_b; 
0x08000166 4804      LDR      r0,[pc,#16]  ; @0x08000178
0x08000168 6800      LDR      r0,[r0,#0x00]
0x0800016A 4904      LDR      r1,[pc,#16]  ; @0x0800017C
0x0800016C 6809      LDR      r1,[r1,#0x00]
0x0800016E 4408      ADD      r0,r0,r1
0x08000170 4902      LDR      r1,[pc,#8]  ; @0x0800017C
0x08000172 6008      STR      r0,[r1,#0x00]11:         return 0; 
0x08000174 2000      MOVS     r0,#0x0012: } 
0x08000176 BD0C      POP      {r2-r3,pc}

综上:并未有机器码和汇编代码来初始化全局变量和静态变量。那么在内存中他们是怎样被初始化赋值的喃?
答案:将全局变量和局部变量需要被初始化的值保存在Flash的数据段里面。有多少个数据,在数据段里面就有多少个数据
在这里插入图片描述
有了数据,那全局变量和局部变量的内存又在哪里喃?又怎样将数据给到全局变量和局部变量喃?

答案:全局变量和静态变量依旧保存在RAM的里面,但不在是栈区。全局变量/静态变量由编译器分配的存储空间,不再是像局部变量由代码指令分配。如下图所示:Linker(链接器):将0x0800 0000的空间与0x2000 0000的空间链接在一起。

在这里插入图片描述
如上图:R/O base:0x0800 0000。表示的是Flash的数据段的起始地址。
在这里插入图片描述

R/W base:0x0200 0000。表示的是RAM中保存全局变量和静态变量的起始地址。
在这里插入图片描述
综上:
①全局变量/局部静态变量赋值和栈里面的局部变量不同,全局变量是先占用低地址空间,而局部变量是先占用高地址空间。

②全局变量是通过copy函数,将Flash里面的数据复制到全局变量和静态变量的内存里面。
③当 main 函数执行完毕时,虽然栈上的局部变量会被销毁,但是全局变量不会受到影响。全局变量在整个程序运行期间都存在,直到程序退出时才会被操作系统回收

【注】copy函数在启动文件里面,由程序员编写,且在调用main函数之前。调用完copy函数后在执行main函数。全局变量在程序启动时分配内存和初始化值,并在整个程序运行期间都保持有效。
在这里插入图片描述

综上为有初始值的全局变量和静态变量的内存分配情况(简称为:RW段),那若没有初始值/初始化为0的全局变量。依然会在Flash的数据段将数据0保存起来吗?显然浪费内存空间。

答案:没有初始值和初始值为0的全局变量,在Flash的数据段里面并未保存数据。但是编译器会在RAM里面给这些变量分配存储空间(简称:ZI段)。在调用main函数之间,调用memset函数将这些变量的存储空间清零。

4、堆空间

综上:①RAM中存在栈区:用于存储局部变量、函数参数、返回地址等。栈内存是自动管理的,随着函数调用和返回而分配和释放。②RAM也存在全局变量/静态局部变量区域。③RAM还存在堆区:堆区由用户调用mallo函数分配和管理,调用free函数进行释放。
在这里插入图片描述
堆区的空间不能在栈区里面分配。因为栈区空间会随着函数的结束而释放,是用户不可控制的。而堆区是不会随着函数的结束而释放。除非main函数终止。

而堆空间可以是全局变量区域。因为都是不会随着函数的结束而释放。除非main函数终止。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/65120.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Transformer知识梳理

Transformer知识梳理 文章目录 Transformer知识梳理什么是Transformer?语言模型迁移学习 Transformer结构注意力层原始结构 总结 什么是Transformer? 语言模型 Transformer模型本质上都是预训练语言模型,大部分采用自监督学习(S…

第29天:PHP应用弱类型脆弱Hash加密Bool类型Array数组函数转换比较

#知识点: 1、安全开发-原生PHP-弱类型脆弱 2、安全开发-原生PHP-函数&数据类型 3、安全开发-原生PHP-代码审计案例 1、 和 两个等号是弱比较,使用进行对比的时候,php解析器就会做隐式类型转换,如果两个值的类型不相等就会把两…

STM32F1学习——编码器接口

一、编码器接口 编码器接口可以接收正交编码器的信号,根据编码器旋转产生的正交信号脉冲,通过硬件自动控制CNT值的自增或自减,从而指出编码器的位置、旋转方向和旋转速度。 每个高级定时器和通用定时器都有一个编码器接口,他们会占…

网络安全的学习与实践经验(附资料合集)

学习资源 在线学习平台: Hack This Site:提供从初学者到高级难度的挑战任务,适合练习各种网络安全技术。XCTF_OJ:由XCTF组委会开发的免费在线网络安全网站,提供丰富的培训材料和资源。SecurityTube:提供丰…

行业商机信息付费小程序系统开发方案

行业商机信息付费小程序系统,主要是整合优质行业资源,实时更新的商机信息。在当今信息爆炸的时代,精准、高效地获取行业商机信息对于企业和个人创业者而言至关重要。 一、使用场景 日常浏览:用户在工作间隙或闲暇时间&#xff0c…

[Qt] 输入控件 | Line | Text | Combo | Spin | Date | Dial | Slider

目录 输入类控件 1、Line Edit 录入个人信息 使用正则表达式验证输入框的数据 验证两次输入的密码一致 切换显示密码 2、Text Edit 获取多行输入框的内容 验证输入框的各种信号 3、Combo Box 使用下拉框模拟麦当劳点餐 从文件中加载下拉框的选项 4、Spin Box 调整…

Flink CDC 自定义函数处理 SQLServer XML类型数据 映射 doris json字段方案

Flink CDC 自定义函数处理 SQLServer XML类型数据方案 1. 背景 因业务使用SQLServer数据库,CDC同步到doris 数仓。对于SQLServer xml类型,doris没有相应的字段对应, 可以使用json来存储xml数据。需要进行一步转换。从 flink 自定义函数入手…

JeeSite 快速开发平台:全能企业级快速开发解决方案|GitCode 光引计划征文展示

投稿人GitCode ID:thinkgem 光引计划投稿项目介绍 JeeSite 快速开发平台,不仅仅是一个后台开发框架,它是一个企业级快速开发解决方案,后端基于经典组合 Spring Boot、Shiro、MyBatis,前端采用 Beetl、Bootstrap、Admi…

2025/1/4期末复习 密码学 按老师指点大纲复习

我们都要坚信,道路越是曲折,前途越是光明。 --------------------------------------------------------------------------------------------------------------------------------- 现代密码学 第五版 杨波 第一章 引言 1.1三大主动攻击 1.中断…

Java 内存溢出(OOM)问题的排查与解决

在 Java 开发中,内存溢出(OutOfMemoryError,简称 OOM)是一个常见且棘手的问题。相比于数组越界、空指针等业务异常,OOM 问题通常更难定位和解决。本文将通过一次线上内存溢出问题的排查过程,分享从问题表现…

【51单片机零基础-chapter3:按键:独立按键|||附带常见C语句.逻辑运算符】

将unsigned char var0;看作沟通二进制和十进制的桥梁 var是8位,初始为0000 0000; 同时可以进行十进制的运算 逻辑运算 位运算 & 按位与(有0则0) | 按位或(有1则1) ~ 按位非 ^ 按位异或(相同则1,不同为0) <<按位左移 >>按位右移 位运算符解释: 0011 1100 <&…

游戏如何检测iOS越狱

不同于安卓的开源生态&#xff0c;iOS一直秉承着安全性更高的闭源生态&#xff0c;系统中的硬件、软件和服务会经过严格审核和测试&#xff0c;来保障安全性与稳定性。 据FairGurd观察&#xff0c;虽然iOS系统具备一定的安全性&#xff0c;但并非没有漏洞&#xff0c;如市面上…

在Lua中,Metatable元表如何操作?

Lua中的Metatable&#xff08;元表&#xff09;是一个强大的特性&#xff0c;它允许我们改变表&#xff08;table&#xff09;的行为。下面是对Lua中的Metatable元表的详细介绍&#xff0c;包括语法规则和示例。 1.Metatable介绍 Metatable是一个普通的Lua表&#xff0c;它用于…

12306分流抢票软件 bypass v1.16.43 绿色版(春节自动抢票工具)

软件介绍 12306Bypass分流抢票软件&#xff0c;易操作强大的12306抢票软件&#xff0c;全程自动抢票&#xff0c;云识别验证码打码&#xff0c;多线程秒单、稳定捡漏&#xff0c;支持抢候补票、抢到票自动付款&#xff0c;支持多天、多车次、多席别、多乘客、短信提醒等功能。…

【Go】运行自己的第一个Go程序

运行自己的第一个Go程序 一、Go语言的安装Go环境安装查看是否安装成功配置GOPROXY(代理) 二、Goland安装三、Goland破解四、新建项目 开一篇专栏记录学习Go的过程&#xff0c;一门新语言从hello world开始&#xff0c;这篇文章详细讲解Go语言环境搭建及hello world实现 一、Go语…

计算机的错误计算(二百零一)

摘要 用两个大模型计算 &#xff0c;结果保留 10位有效数字。实验表明&#xff0c;两个大模型的输出均只有1位正确数字&#xff1b;并它们几乎相同&#xff1a;仅最后1位数字不同。 例1. 计算 , 结果保留 10位有效数字。 下面是与一个数学解题器的对话。 以上为与一个数学解…

2024 年度时序数据库 IoTDB 论文总结

论文成果总结 2024 年度&#xff0c;时序数据库 IoTDB 在数据库领域 CCF-A 类国际会议上共发表论文 8 篇&#xff0c;包括&#xff1a;SIGMOD 3 篇、VLDB 3 篇、ICDE 2 篇&#xff0c;涵盖存储、引擎、查询、分析等方面。 2024 最后一天&#xff0c;我们将分类盘点 IoTDB 本年的…

ImportError: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.32‘ not found

这个问题之前遇到过&#xff0c;没有记录&#xff0c;导致今天又花了2小时 原因是没有GLIBC——2.32 使用以下命令查一下有哪些版本&#xff1a; strings /lib/x86_64-linux-gnu/libm.so.6 | grep GLIBC_ 我已经安装好了&#xff0c;所有有2.32版本 原因是当前的ubuntu版本…

海南省大数据发展中心:数据资产场景化评估案例手册(第二期)

2025年1月3日&#xff0c;海南省数据产品超市印发《数据资产场景化评估案例手册&#xff08;第二期&#xff09;》&#xff08;以下简称《手册》&#xff09;&#xff0c;该手册是基于真实数据要素典型应用场景进行数据资产评估操作的指导性手册&#xff0c;为企业在数据资产入…

python3GUI--智慧交通监控与管理系统 By:PyQt5

文章目录 一&#xff0e;前言二&#xff0e;预览三&#xff0e;软件组成&技术难点1.软件组成结构2.技术难点3.项目结构 四&#xff0e;总结 大小&#xff1a;35.5 M&#xff0c;软件安装包放在了这里! 一&#xff0e;前言 博主高产&#xff0c;本次给大家带来一款我自己使…