【论文笔记】Visual Alignment Pre-training for Sign Language Translation

🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


基本信息

标题: Visual Alignment Pre-training for Sign Language Translation
作者: Peiqi Jiao, Yuecong Min, Xilin Chen
发表: ECCV 2024

基本信息

摘要

手语翻译(Sign Language Translation, SLT)旨在将手语视频翻译为文本句子。

尽管gloss序列为SLT中的视觉表征学习提供了有效的对齐监督信息,但标注gloss的高成本限制了其可扩展性。

现有工作在gloss-free的情况下尚未取得令人满意的结果。

在本研究中,我们将这一挑战归因于视觉token和文本token之间的灵活对应关系,并通过从文本句子中构建类似gloss的约束来解决这一问题。

具体而言,我们提出了一种 视觉对齐预训练(Visual Alignment Pre-training, VAP) 方案,通过以贪婪的方式对齐视觉和文本token来利用视觉信息。

VAP方案增强了视觉编码器捕获语义感知视觉信息的能力,并促进了与在大规模语料库上预训练的翻译模块的更好适配。

针对四个SLT基准的实验结果证明了VAP的有效性,能够生成合理的对齐,并显著缩小与gloss-based方法之间的性能差距。

介绍

Illustration of the alignment generated by VAP for a given sign video and its text sentence

主要贡献

  • 探讨了gloss annotation在手语翻译(SLT)中的作用,并展示了在gloss-free设置下利用视觉信息的重要性。
  • 提出了视觉对齐预训练(Visual Alignment Pre-training, VAP),通过以贪婪的方式对齐视觉和文本token来促进视觉表征学习。
  • 对gloss-free的SLT模型训练进行了深入的实验。实验结果表明,VAP具有良好的效果,能够生成可靠的对齐结果,并接近gloss-based的方法。

方法

Overview of the proposed visual alignment pre-training

gloss标注在手语翻译中的作用

手语翻译旨在将手语视频翻译为对应的文本句子。如图2所示,通用的SLT网络可以划分为一个视觉编码器 ψ V \psi_V ψV 和一个翻译模块 ψ T \psi_T ψT。给定一个手语视频或其他类型的输入(例如,骨架数据) X \mathcal{X} X 和对应的文本句子 s = { s 1 , ⋯ , s U } s = \{s_1, \cdots, s_U\} s={s1,,sU} ψ V \psi_V ψV 从视频中提取视觉特征 V = { v 1 , ⋯ , v r } \mathcal{V} = \{v_1, \cdots, v_r\} V={v1,,vr},而 ψ T \psi_T ψT 基于 V \mathcal{V} V 预测 s s s。网络通过最小化负对数似然来优化,其公式为:

L S L T = − log ⁡ p ( s ∣ V ; θ ψ V , θ ψ T ) . \mathcal{L}_{SLT} = -\log p(s | \mathcal{V}; \theta_{\psi_V}, \theta_{\psi_T}). LSLT=logp(sV;θψV,θψT).

在自然语言处理(NLP)中,单词对齐通常指的是在平行文本中指示对应单词 a = { a i } i = 1 m a = \{a_i\}_{i=1}^m a={ai}i=1m b = { b j } j = 1 n b = \{b_j\}_{j=1}^n b={bj}j=1n 的过程,可以表示为矩阵 A ∈ R m × n \mathcal{A} \in \mathbb{R}^{m \times n} ARm×n,其中 A i j ∈ { 0 , 1 } A_{ij} \in \{0, 1\} Aij{0,1} 表示 a i a_i ai 是否与 b j b_j bj 对应。考虑到 V \mathcal{V} V s s s 之间的对齐关系 A \mathcal{A} A,最近gloss-based的SLT研究中使用的损失函数可以重新表述为:

L = L S L T + L S L R = − log ⁡ ∑ A p ( A ∣ V ) p ( s ∣ V , A ) − log ⁡ p ( g ∣ V ) , \mathcal{L} = \mathcal{L}_{SLT} + \mathcal{L}_{SLR} = -\log \sum_{\mathcal{A}} p(\mathcal{A} | \mathcal{V}) p(s | \mathcal{V}, \mathcal{A}) - \log p(g | \mathcal{V}), L=LSLT+LSLR=logAp(AV)p(sV,A)logp(gV),

其中 g = { g 1 , ⋯ , g M } g = \{g_1, \cdots, g_M\} g={g1,,gM} 表示包含 M M M 个gloss的gloss标注,它与 V \mathcal{V} V 单调对齐。如上文公式所示, L S L T \mathcal{L}_{SLT} LSLT 的监督来自两个方面:对齐本身和翻译与对齐的结合。gloss-based的方法通过引入额外的监督来提高视觉信息的利用率。然而,之前的gloss-free方法表现较差,主要原因在于 V \mathcal{V} V s s s 之间的灵活对应关系,这阻碍了最佳对齐的寻找,并无法为视觉编码器提供足够的监督。

基于以上分析,我们认为解决该问题的关键在于从文本句子中构建类似gloss的约束,并提出了 视觉对齐预训练(Visual Alignment Pre-training, VAP) 方案。

视觉对齐预训练

gloss-based的传统方法通常利用CTC(连接时序分类)对 ψ V \psi_V ψV 进行监督,假设 ψ V \psi_V ψV 中所有的单调对齐均成立,公式如下:

L C T C ( g , V ) = − log ⁡ ( p ( g ∣ V ; θ ψ V ) ) = − log ⁡ ( ∑ π p ( π ∣ V ; θ ψ V ) ) L_{CTC}(g, V) = -\log(p(g|V; \theta_{\psi_V})) = -\log\left(\sum_{\pi}p(\pi|V; \theta_{\psi_V})\right) LCTC(g,V)=log(p(gV;θψV))=log(πp(πV;θψV))

其中 π \pi π 表示 V V V g g g 之间的一种对齐关系。我们假设视频中每个手势的近似含义可以在对应的文本句子中找到,并尝试利用 V V V s s s 之间的对齐关系来监督 ψ V \psi_V ψV。然而, V V V s s s 之间存在多达 2 T ⋅ U 2^{T \cdot U} 2TU 种潜在的对齐方式,这对在没有适当约束的情况下(例如单调关系或gloss注解所具有的约束)识别最佳对齐关系提出了挑战。受近期视觉-语言预训练技术的启发,我们提出了一种VAP方案,用于简化对齐过程,以贪婪方式近似最佳对齐,并为视觉编码器提供逐帧标签。

具体而言,给定一个文本句子 s s s,我们首先使用文本编码器 ψ E \psi_E ψE 提取其对应的文本特征 ψ E ( s ) \psi_E(s) ψE(s),然后通过两个简单的线性层将 V V V ψ E ( s ) \psi_E(s) ψE(s) 投影到一个联合特征空间:

v ~ t = Linear ( v t ) , s ~ u = Linear ( ψ E ( s u ) ) . \tilde{v}_t = \text{Linear}(v_t), \quad \tilde{s}_u = \text{Linear}(\psi_E(s_u)). v~t=Linear(vt),s~u=Linear(ψE(su)).

随后,通过识别每个视觉特征与最相似的文本特征,可以计算对齐关系 A V 2 S ∈ R T × U \mathbf{A}^{V2S} \in \mathbb{R}^{T \times U} AV2SRT×U

A t , u V 2 S = { 1 , for  u = arg ⁡ max ⁡ u ′ f ( v ~ t , s ~ u ′ ) , 0 , otherwise . A^{V2S}_{t,u} = \begin{cases} 1, & \text{for } u = \arg\max_{u'} f(\tilde{v}_t, \tilde{s}_{u'}), \\ 0, & \text{otherwise}. \end{cases} At,uV2S={1,0,for u=argmaxuf(v~t,s~u),otherwise.

其中, f ( ⋅ , ⋅ ) f(\cdot, \cdot) f(,) 以余弦相似度的形式实现。为了确保 A V 2 S \mathbf{A}^{V2S} AV2S 的合理性,我们通过以下公式计算视频和文本的相似性 ρ ( X , s ) \rho(\mathcal{X}, s) ρ(X,s)

ρ ( X , s ) = 1 T ∑ t = 1 T f ( v ~ t , A t V 2 S s ~ ) , \rho(\mathcal{X}, s) = \frac{1}{T} \sum_{t=1}^{T} f(\tilde{v}_t, A^{V2S}_t \tilde{s}), ρ(X,s)=T1t=1Tf(v~t,AtV2Ss~),

并采用对比学习模式优化 A V 2 S \mathbf{A}^{V2S} AV2S。然而,仅依赖 ρ ( X , s ) \rho(\mathcal{X}, s) ρ(X,s) 进行预训练可能会导致 ψ V \psi_V ψV 的输出坍缩为一个恒定值。为了避免这种情况,我们还计算文本与视频的相似性 ρ ( s , X ) \rho(s, \mathcal{X}) ρ(s,X),该相似性通过为每个文本特征识别最相似的视觉特征 A S 2 V \mathbf{A}^{S2V} AS2V 来计算。

在此基础上,对于包含 N N N 个视频-文本对 { X i , s i } i = 1 N \{ \mathcal{X}^i, s^i \}_{i=1}^N {Xi,si}i=1N 的小批量,可以通过以下公式计算对比损失:

L Align = − 1 2 N ( ∑ i = 1 N log ⁡ exp ( ρ ( X i , s i ) / σ ) ∑ j = 1 N exp ( ρ ( X i , s j ) / σ ) + ∑ i = 1 N log ⁡ exp ( ρ ( s i , X i ) / σ ) ∑ j = 1 N exp ( ρ ( s i , X j ) / σ ) ) , L_{\text{Align}} = -\frac{1}{2N} \left( \sum_{i=1}^N \log\frac{\text{exp}(\rho(\mathcal{X}^i, s^i) / \sigma)}{\sum_{j=1}^N \text{exp}(\rho(\mathcal{X}^i, s^j) / \sigma)} + \sum_{i=1}^N \log\frac{\text{exp}(\rho(s^i, \mathcal{X}^i) / \sigma)}{\sum_{j=1}^N \text{exp}(\rho(s^i, \mathcal{X}^j) / \sigma)} \right), LAlign=2N1(i=1Nlogj=1Nexp(ρ(Xi,sj)/σ)exp(ρ(Xi,si)/σ)+i=1Nlogj=1Nexp(ρ(si,Xj)/σ)exp(ρ(si,Xi)/σ)),

其中, σ \sigma σ 是用于缩放logits的预定义温度。通过所提出的 L Align L_{\text{Align}} LAlign,我们增大了成对的视觉和文本特征序列之间的相似性,这将鼓励每个特征找到其最相关的配对特征并靠拢。

此外,对齐的计算仅依赖于gloss级别的信息,缺乏对齐时间一致性的约束。上文公式的分解表明,翻译损失也显著增强了对齐质量。我们通过实验(表3)展示,仅通过重新初始化翻译模块就可以提升性能,这表明优化对齐过程与提升翻译能力同步进行的重要性。因此,我们将 L SLT L_{\text{SLT}} LSLT 纳入进来,以确保所用翻译模块的时间一致性,从而达到对齐的时间一致性。预训练阶段的最终监督目标如下:

L pre-train = L Align + L SLT . L_{\text{pre-train}} = L_{\text{Align}} + L_{\text{SLT}}. Lpre-train=LAlign+LSLT.

通过以上设计,我们可以计算视觉和文本token之间的近似对齐,并获得一个语义感知的视觉编码器。

端到端微调

与一般的机器翻译数据集相比,公共的手语翻译(SLT)数据集仍然规模有限。因此,我们采用在大规模语料库(如 mBART, T5)上预训练的翻译模块来替代浅层翻译模块,从而在微调过程中缓解对大量训练数据的需求。此外,类似于文献中的 G2T(Gloss2Text)任务,我们设计了一个伪gloss到文本(P2T,Pseudo-gloss2Text)任务,用于微调预训练翻译模块以更好地适应任务。

具体来说,我们可以基于对齐矩阵 A v 2 s A^{v2s} Av2s 为每个手语视频生成一个伪gloss序列 g ~ \tilde{g} g~。由于 A v 2 s A^{v2s} Av2s 为每个视觉特征识别出最相似的文本token,而视频的连续性导致局部窗口内的特征可能会引用相同的token,我们简单地合并重复的token,通过以下公式获得 g ~ \tilde{g} g~

g ~ = B ( A v 2 s s ) , \tilde{g} = \mathcal{B}(A^{v2s}s), g~=B(Av2ss),

其中, B \mathcal{B} B 表示合并操作。P2T 的训练目标可以表述为:

L P 2 T = − log ⁡ p ( s ∣ g ~ ) . \mathcal{L}_{P2T} = -\log p(s|\tilde{g}). LP2T=logp(sg~).

至此,我们已经有了预训练良好的视觉编码器和微调良好的翻译模块。接下来是对整个模型的端到端微调。我们采用一个两层的 MLP 作为视觉-语言映射器(V-L 映射器),与之前工作中相同,该模块负责将视觉特征投影到文本空间。在微调期间,我们仍然包括 L A l i g n \mathcal{L}_{Align} LAlign 损失以持续改进视觉编码器,最终的总损失可以表示为:

L f i n e − t u n e = L A l i g n + L S L T . \mathcal{L}_{fine-tune} = \mathcal{L}_{Align} + \mathcal{L}_{SLT}. Lfinetune=LAlign+LSLT.

对齐质量评估

在上文中,我们假设视频中每个手语的大致含义可以在文本句子中找到,并通过识别最相似的文本token来计算对齐关系。基于这一假设,生成的伪gloss g ~ \tilde{g} g~ 也应该与手语视频单调对齐。然而,由于不同词汇之间的差异,我们无法直接通过gloss来评估生成对齐关系的质量。因此,我们提出了两种方法来间接评估生成对齐关系的质量。

如果 g ~ \tilde{g} g~ 与手语视频单调对齐,它应该能够像gloss一样指导 SLT 网络的学习。因此,我们从零开始训练一个 SLT 网络,类似于大多数gloss-based的 SLT 方法,但用伪gloss g ~ \tilde{g} g~ 替代了gloss,其损失函数可以表述为:

L = L S L T + L C T C ( g ~ , V ) , \mathcal{L} = \mathcal{L}_{SLT} + \mathcal{L}_{CTC}(\tilde{g}, V), L=LSLT+LCTC(g~,V),

通过这种基于伪gloss的模型与 VAP 的性能差距可以隐式反映生成对齐关系的质量。

与通过翻译性能(如词错误率,WER)评估对齐质量相比,通过对齐性能进行评估更为直观。因此,我们提出通过在预训练中用伪gloss替换文本句子,计算生成伪gloss与对应gloss之间的 WER 来评估对齐方法的质量。换句话说,这种方法旨在检查对齐方法是否能够从无序序列中找到正确的顺序。

总的来说,所提出的方法能够评估对齐关系的质量,包括生成结果和对齐方法本身的质量。

训练与推理

训练

如图 3 所示,VAP 的训练流程包括三个阶段。

Illustration of the training pipeline of VAP

视觉编码器在第 1 阶段使用 L pre-train L_{\text{pre-train}} Lpre-train 进行预训练。翻译模块基于大规模语料库进行预训练,并在第 2 阶段使用 g ~ \tilde{g} g~ 进行微调。最后,在第 3 阶段,整个模型使用 L f i n e − t u n e \mathcal{L}_{fine-tune} Lfinetune 进行端到端微调。

需要注意的是,VAP 是一种gloss-free方法,gloss仅用于如上文所述的伪gloss质量评估。

推理

在经过第3阶段的微调后,整个模型被用于推理。具体来说,视觉编码器首先提取视觉特征 V \mathcal{V} V,然后视觉-语言映射器(V-L mapper)将这些特征投射到文本空间中。接下来,翻译模块以自回归的方式生成文本句子。

实验

主实验

Performance comparison on PHOENIX14T and CSL-Daily

Performance comparison on How2Sign and OpenASL

消融实验

Ablation results of pre-training objectives. Ablation results of fine-tuning and pseudo-gloss-based training. Ablation results of gloss-based VAP

Comparison with SOTA retrieval method on PHOENIX14T test set. Ablation results of aggregation method

可视化

Qualitative results of translation and alignment. Visualization of the retrieval results of two German words. Visualization of the CTC and VAP predictions

总结

在本文中,我们专注于在无gloss标注情况下,如何在手语翻译(SLT)中利用视觉信息。

我们提出了一种视觉对齐预训练(Visual Alignment Pre-training, VAP)方案,通过从文本句子中构建类似gloss的约束来增强视觉编码器的能力。

VAP以一种贪心的方式逼近视觉特征与文本token之间的最优对齐,同时为视觉编码器提供逐帧的标签,并改善其与在大规模语料库上预训练的翻译模块之间的兼容性。

实验结果表明,所提出的VAP方案在引导视觉编码器学习和建立视觉特征与文本token之间的有意义对齐方面是有效的。此外,VAP生成的对齐结果可以作为伪gloss,为手语翻译模型提供中间监督。

我们预计,所提出的VAP方案将推动未来的研究工作,特别是在将手语翻译扩展到大规模数据集方面,从而促进手语翻译领域的发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/64098.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入浅出 MyBatis | CRUD 操作、配置解析

3、CRUD 3.1 namespace namespace 中的包名要和 Dao/Mapper 接口的包名一致! 比如将 UserDao 改名为 UserMapper 运行发现抱错,这是因为 UserMapper.xml 中没有同步更改 namespace 成功运行 给出 UserMapper 中的所有接口,接下来一一对…

前端:改变鼠标点击物体的颜色

需求&#xff1a; 需要改变图片中某一物体的颜色&#xff0c;该物体是纯色&#xff1b; 鼠标点击哪个物体&#xff0c;哪个物体的颜色变为指定的颜色&#xff0c;利用canvas实现。 演示案例 代码Demo <!DOCTYPE html> <html lang"en"><head>&l…

递归算法常见问题(Java)

问题&#xff1a;斐波那契数列,第1项和第2项都为1&#xff0c;后面每一项都为相邻的前俩项的和,求第n个数 解法&#xff1a;每一个数都为前俩个数之和&#xff0c;第1项和第2项都为1&#xff0c;所以写 方法f1(n)即为求第n个数&#xff0c;那么f1(n-1)为求第n-1个数&#xff0…

C项目 天天酷跑(下篇)

上篇再博客里面有&#xff0c;接下来我们实现我们剩下要实现的功能 文章目录 碰撞检测 血条的实现 积分计数器 前言 我们现在要继续优化我们的程序才可以使这个程序更加的全面 碰撞的检测 定义全局变量 实现全局变量 void checkHit() {for (int i 0; i < OBSTACLE_C…

论文解读——掌纹生成网络 RPG-Palm升级版PCE-Palm

该文章是2023年论文RPG-Palm的升级版 论文&#xff1a;PCE-Palm: Palm Crease Energy Based Two-Stage Realistic Pseudo-Palmprint Generation 作者&#xff1a;Jin, Jianlong and Shen, Lei and Zhang, Ruixin and Zhao, Chenglong and Jin, Ge and Zhang, Jingyun and Ding,…

oscp学习之路,Kioptix Level2靶场通关教程

oscp学习之路&#xff0c;Kioptix Level2靶场通关教程 靶场下载&#xff1a;Kioptrix Level 2.zip 链接: https://pan.baidu.com/s/1gxVRhrzLW1oI_MhcfWPn0w?pwd1111 提取码: 1111 搭建好靶场之后输入ip a看一下攻击机的IP。 确定好本机IP后&#xff0c;使用nmap扫描网段&…

第二十六周机器学习笔记:PINN求正反解求PDE文献阅读——正问题

第二十六周周报 摘要Abstract文献阅读《Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations》1. 引言2. 问题的设置3.偏微分方程的数据驱动解3.1 连续时间模型3.1.1 …

【安全编码】Web平台如何设计防止重放攻击

我们先来做一道关于防重放的题&#xff0c;答案在文末 防止重放攻击最有效的方法是&#xff08; &#xff09;。 A.对用户密码进行加密存储使用 B.使用一次一密的加密方式 C.强制用户经常修改用户密码 D.强制用户设置复杂度高的密码 如果这道题目自己拿不准&#xff0c;或者…

中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?

客户服务的个性化和标准化之间的矛盾一直是一个挑战。一方面&#xff0c;企业需要提供标准化的服务以保持运营效率和成本控制&#xff1b;另一方面&#xff0c;为了提升客户满意度和忠诚度&#xff0c;企业又必须满足客户的个性化需求。为此&#xff0c;中关村科金推出了智能客…

Agent 案例分析:金融场景中的智能体-蚂蚁金服案例(10/30)

Agent 案例分析&#xff1a;金融场景中的智能体 —蚂蚁金服案例 一、引言 在当今数字化时代&#xff0c;金融行业正经历着深刻的变革。随着人工智能技术的飞速发展&#xff0c;智能体&#xff08;Agent&#xff09;在金融场景中的应用越来越广泛。蚂蚁金服作为金融科技领域的…

STM32F407 | Embedded IDE01 - vscode搭建Embedded IDE开发环境(支持JLINK、STLINK、DAPLINK)

导言 Embedded IDE官网:https://em-ide.com/docs/intro 我猜肯定有部分人使用SI Keil开发STM32项目&#xff0c;也有vscode Keil开发STM32程序。SI或vscode编写代码&#xff0c;然后切换Keil编译、下载、调试程序。有一段时间&#xff0c;我也是这么干的。但是&#xff0c;程…

光谱相机的工作原理

光谱相机的工作原理主要基于不同物质对不同波长光的吸收、反射和透射特性存在差异&#xff0c;以下是其具体工作过程&#xff1a; 一、光的收集 目标物体在光源照射下&#xff0c;其表面会对光产生吸收、反射和透射等相互作用。光谱相机的光学系统&#xff08;如透镜、反射镜…

html + css 淘宝网实战

之前有小伙伴说&#xff0c;淘宝那么牛逼你会写代码&#xff0c;能帮我做一个一样的淘宝网站吗&#xff0c;好呀&#xff0c;看我接下来如何给你做一个淘宝首页。hahh,开个玩笑。。。学习而已。 在进行html css编写之前 先了解下网页的组成和网页元素的尺寸吧 1.网页的组成 …

【不太正常的题】LeetCode.232:用栈的函数接口实现队列

&#x1f381;个人主页&#xff1a;我们的五年 &#x1f50d;系列专栏&#xff1a;初阶数据结构刷题 &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐文章 &#x1f697; 1.问题描述&#xff1a; 题目中说了只能使用两个栈实现队列&#xff0c;并且只能使用…

Linux搭建text-generation-webui框架,安装通义千问大模型,开放对外api,voxta测试对话图文教程

目录 text-generation-webui部分 开放对外API 通义千问部分 远程API对话测试部分 text-generation-webui部分 本来不想发这个文章的&#xff0c;但是自己部署的时候看了挺多人的帖子&#xff0c;很多发的不全面&#xff0c;要么就是跟着他们流程走有些小问题啥的&#xff…

QT程序发布后,mysql在其它电脑设备无法连接数据库

QT程序发布后&#xff0c;mysql在其它电脑设备无法连接数据库 D:\mysql-5.7.24-winx64\lib, mysql-5.7.24-winx64是一个压缩包&#xff0c;用于启动mysql服务&#xff0c;创建数据库 压缩包 解决方法&#xff1a; 拷贝库到exe的相同目录&#xff0c;libmysql.dll,libmysql.li…

Nginx单向链表 ngx_list_t

目录 基本概述 数据结构 接口描述 具体实现 ngx_list_create ngx_list_init ngx_list_push 使用案例 整理自 nginx 1.9.2 源码 和 《深入理解 Nginx&#xff1a;模块开发与架构解析》 基本概述 Nginx 中的 ngx_list_t 是一个单向链表容器&#xff0c;链表中的每一个节…

软件项目需求分析的实践探索(1)

一、项目启动与规划 组建团队 包括项目经理、系统分析师、业务分析师以及可能涉及的最终用户代表和领域专家等。例如&#xff0c;开发一个医疗管理软件&#xff0c;就需要有医疗行业的专家参与&#xff0c;确保对医疗业务流程有深入理解。明确各成员的职责&#xff0c;如系统分…

网络管理-期末项目(附源码)

环境&#xff1a;网络管理 主机资源监控系统项目搭建 &#xff08;保姆级教程 建议点赞 收藏&#xff09;_搭建网络版信息管理系统-CSDN博客 效果图 下面3个文件的项目目录(python3.8.8的虚拟环境) D:\py_siqintu\myproject5\Scripts\mytest.py D:\py_siqintu\myproject5\Sc…

MySQL 常用程序介绍

以下是一些常用的MySQL程序&#xff1a; 程序名作⽤mysqldMySQL的守护进程即 MySQL 服务器&#xff0c;要使⽤MySQL 服务器 mysqld必须正在运⾏状态mysql MySQL客⼾端程序&#xff0c;⽤于交互式输⼊ SQL 语句或以批处理模式从⽂件执⾏SQL的命令⾏⼯具 mysqlcheck⽤于检查、修…